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ABSTRACT 
 
Question: Population ecology and population genetics are 
treated separately in most textbooks. However, Darwin's 
term 'The Struggle for Existence' included both natural 
selection and ecological competition. Using the simplest 
possible mathematical models, this paper searches for 
historical reasons for the lack of unity in ecological and 
evolutionary thought. 
 
Assumptions and methods: Logistic density-dependent 
population growth and Lotka-Volterra competition models 
are used throughout. Derivations of the logistic from first 
principles of resource use, competition for space, and 
births and deaths of individuals, are documented. A full 
range of possible kinds of natural selection, including 
constant selection, density- and frequency-dependent 
selection, as well as hard and soft selection, can emerge 
cleanly as natural outcomes from the simplest-imaginable 
haploid models derived from Lotka-Volterra competition. 
Extensions to incorporate more realism, including non-
linear per capita density-dependence, Allee effects, complex 
life histories, discrete generations, diploid Mendelian 
genetics, sexual populations, and speciation are briefly 
discussed. 
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Conclusions: Widespread use of r-K ('carrying capacity') 
models of population growth appears to have catalysed 
fundamental discords in ecology, and between ecology 
and evolution. Verhulst's original polynomial form of the 

logistic, here termed the r-α model, is both more natural in 

theory, and accords better with empirical data. The r-α 
formulation explains apparent paradoxes involving the  
r-K logistic, including controversial aspects of r and K 

selection. Adoption of first-principles birth-death or r-α 
modelling clarifies natural selection in density-regulated 
populations, and leads to an improved understanding of 
Darwinian evolution and speciation.



Mallet: The Struggle for Existence 4

INTRODUCTION 
 
The theoretical core of evolutionary biology – evolutionary 
genetics – often ignores the original impetus of its creation, 
population ecology. Both Darwin and Wallace 
independently happened upon the idea of natural 
selection after reading Malthus' treatise on population 
growth and human suffering (Malthus, 1826). Some of the 
earliest ecologists to investigate competition were 
motivated by an interest in Darwin's 'struggle for 
existence,' or natural selection (Gause, 1934; Scudo & 
Ziegler, 1978), but later population ecologists focused only 
on population densities of competing individuals and 
species.  Meanwhile, the originators of population 
genetics, Ronald A. Fisher, J.B.S. Haldane and Sewall 
Wright, based theories of natural selection on 
demography, but generalized their evolutionary models 
almost exclusively in terms of gene frequencies within 
species. As a result, today's textbooks treat population 
ecology and evolution by natural selection as almost 
entirely separate topics. 
 
What is the importance of density-dependence in 
population growth? What is 'fitness' in evolution? These 
questions may seem somewhat trivial to a mathematical 
biologist, but both have been subject to extensive 
discussion over the last century or so. Related debates 



Mallet: The Struggle for Existence 5

were about 'r-' versus 'K-selection,' and its relevance for life 
history strategies in what is broadly considered part of 
'ecology,' as well as frequency- and density-dependent 
selection, as well as speciation, topics considered part of 
'evolutionary genetics.' 
 
In this article I advance a novel thesis: that these debates 
have been particularly intractable due to a tendency for 
logistic and related models of population growth to 
deceive their users. The problem is not with demographic 
theory itself, but with our interpretation of particular 
formulations that include a 'carrying capacity' parameter, 
K. It is possible to claim even more: that these problems 
began with a historical accident, and then led to a major 
rift between evolutionary genetics and population ecology. 
 
My attempt to explain this impasse is predicated on the 
Darwinian idea that natural selection is isomorphic with 
ecological competition. Therefore demography, natural 
selection and speciation should be formulated using the 
same underlying models. In contrast, models of natural 
selection are still largely separate from those of ecological 
competition (Lewontin, 2004), and neither map closely 
onto models of adaptive speciation.  
 
For example Schluter's treatment of adaptive radiation 
(Schluter, 2000) argues that the ecological theory of 
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adaptive radiation consists of "… three main processes… 
The first is phenotypic divergence … driven by natural 
selection between environments. The second is phenotypic 
divergence mediated by competition for resources … The 
third [is] 'ecological speciation,' whereby new species arise 
by … divergent selection stemming from environments 
and resource competition." (Schluter, 2000: 65-66). But 
demographic competition is the source of natural selection 
as well as the cause of speciation, and both are also forms 
of reproductive isolation. Competitive, or ecological 
speciation can therefore result from a single, unified 
process in density-limited populations (Rosenzweig, 1978; 
Dieckmann & Doebeli, 1999). Both natural selection and 
resource competition depend entirely on differences 
among populations (or species) in per capita population 
growth: competition and natural selection are therefore 
identical. If we can sort out these issues in the simplest 
cases of natural selection, and if speciation falls in line 
(Metz, 2011), perhaps the mists will part to allow the 
reconstruction of a unified Darwinian theory of ecology 
and evolution, including competition, natural selection, 
and speciation. 
 

LOGISTIC MODEL OF POPULATION GROWTH 
 
The normal form of the logistic equation found in ecology 
textbooks is the 'carrying capacity' or r-K formulation: 
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1
1

dN N
R r

N dt K

 = = − 
                     (1) 

 
Note that the equation is expressed here in terms of per 
capita growth rate, R, Fisher's (1930) 'Malthusian 
parameter' of Darwinian fitness. N is the population size, t 
is time, r is the intrinsic rate of increase – the rate of 
increase when the population has very low size – and K is 
the equilibrium population size, or carrying capacity. This 
version of the logistic is ubiquitous in today's ecology 
textbooks. The r-K model is related to many other carrying 
capacity-based formulations of density regulation and 
interspecific competition, including the theta-logistic 
models (Ayala et al., 1973), and the Ricker (Ricker, 1954) 
and similar discrete-time analogues of the logistic. 
Carrying capacity formulations have come to seem 
intuitive, and also underlie many recent theoretical and 
practical applications in ecology. The logistic and its 
extensions into competition have been used in many 
attempts to incorporate these ideas into evolutionary 
models, particularly in relation to density-dependent 
selection and r and K selection (see discussion below). 
 
It is not generally realized that the use of a carrying 
capacity (K) parameter required a change of variables 
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compared with the original equation for logistic growth 
(Verhulst, 1838; Pearl & Reed, 1920; Lotka, 1925; Volterra, 
1927; Kostitzin, 1939). The form of the Malthusian 
parameter in these was: 
 

1 dN
R r N

N dt
α= = −        (2) 

 
Here r apparently has a similar meaning of intrinsic 
growth rate when population size is low, as in equation 1 

(but see below for some differences), while α is the 
density-dependent crowding effect, or intraspecific 
competition coefficient. As shorthand, I shall call equation 

2 the r-α model, in contrast to equation 1, the r-K model. 
This simpler, polynomial form of the logistic was justified 
by its original authors because it represents the simplest 
useful Taylor approximation to the true non-linear model 
(Verhulst, 1838; Lotka, 1925; Hutchinson, 1978). The two 
are of course interconvertible formulations of the same 

underlying logistic, since the r-α model has equilibrium 
ˆ /N r α= , equivalent to K in equation 1. The r/α equilibrium 

seems intuitively reasonable as a balance between density-
independent growth and its density-dependent regulation; 
in contrast, K, seen as a carrying capacity parameter, seems 
to confuse a fixed resource limit with equilibrium density. 
Given that both these formulations represent the same 
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underlying model, it is obviously immaterial which we 
use. However, as I argue below, the r-K model has 
nonetheless misled generations of ecologists and 

evolutionary biologists in a way that the r-α model would 
not have done. 
 
Trawling the tangled history, I have encountered 
publications that raise almost all the problems I discuss 
here (Schoener, 1973; Jensen, 1975; Vandermeer, 1975; 
Kozlowski, 1980; Hallam & Clark, 1981; Clark, 1983; Kuno, 
1991; Christiansen, 2004; Lewontin, 2004; Gabriel et al., 
2005; Pastor, 2008). Although these treatments have in 
some cases long been available, their potential readership 
has largely ignored them. Textbooks continue to teach 
ecology and evolution as separate topics having rather 
different-looking basic theory. My treatment will in 
addition therefore develop a historical and explanatory 
hypothesis of how this situation came about. Few appear 
to have put evolutionary problems together with the 
ecology to come up with a synthesis of the whole area (but 
see (Kostitzin, 1939; Crow & Kimura, 1970; Leigh, 1971; 
Smouse, 1976; Prout, 1980; Meszéna & Pásztor, 1990; 
Christiansen, 2004; Meszéna et al., 2005; Barton et al., 2007; 
Metz, 2011). This I attempt here, for the simplest case of 
instantaneous logistic population growth, Lotka-Volterra 
competition, and natural selection in asexual haploids.  
Extensions of this model to diploidy, discrete generations, 
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complex life history, and quantitative traits are discussed 
but glossed over briefly because they can involve much 
greater complexity; however, these extensions are readily 
obtained in principle, and have already appeared in 
various forms elsewhere (Kostitzin, 1936; Kostitzin, 1939; 
Charlesworth, 1971; Roughgarden, 1971; Smouse, 1976; 
Levin, 1978; Prout, 1980; Charlesworth, 1980).  
 
I begin with a brief defence of the logistic and its extension 
to competition among populations, while also pointing to 
its real deficiencies. This prepares for the main part of the 
paper, which outlines how other apparent deficiencies and 
paradoxes of the logistic are illusory. I document how a 
historical accident led to the substitution of the original, 

more natural r-α logistic by today's widely used r-K 

formulation. I review how the r-α logistic can be derived 
'microscopically' from first principles of births and deaths 
in density-limited populations, referring in passing to 
much more detailed theory showing that similar forms can 
be derived from considerations of the flow of energy and 
chemicals. Then I describe how natural selection in 
density-dependent populations becomes clarified in the r-

α logistic, and how the r-K form has led to a number of 
controversies, focussing especially on density-dependent 
selection, as well as r and K selection. I describe how many 
of these problems can be resolved using more natural, 
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process-based r-α forms. Finally, I discuss how these 
findings are important for understanding speciation. 
 
 

WHY USE THE LOGISTIC?  
IN DEFENCE OF THE SIMPLEST MODEL 

  
A number of mathematical treatments successfully 
incorporate per capita population growth, Fisher's 
Malthusian fitness parameter, into very general models of 
natural selection and evolution (Fisher, 1922; Haldane, 
1924; Fisher, 1930; Charlesworth, 1971; Levin, 1978; Metz et 
al., 1992; Barton et al., 2007; Metz, 2011). My aims here are 
much more modest: to show how the most widely known 
model of density-dependent population growth, the 
logistic equation and its extension into Lotka-Volterra 
competition, can lead simply to a rich variety of 
behaviours under natural selection. Even this limited 
synthesis has received previous attention (Kostitzin, 1936; 
Smouse, 1976), but the results have been largely 
unrecognized: they are absent from textbooks of evolution 
and evolutionary genetics (Hartl & Clark, 2007; Barton et 
al., 2007; Futuyma, 2009; Charlesworth & Charlesworth, 
2010), ecology (Ricklefs & Miller, 2000; Begon et al., 2006; 
Gotelli, 2008; Krebs, 2009), or combined textbooks (Wilson 
& Bossert, 1971; Roughgarden, 1979; Charlesworth, 1980; 
Ricklefs, 2008).  



Mallet: The Struggle for Existence 12

 
The logistic equation is unrealistic. It ignores separate 
sexes and life history, and makes the simplest possible 
assumption about density-dependence – a linear decline of 
per capita growth rate via an instantaneous response to 
current density. The 'production curves' of natural 
populations, graphs of the rate of population growth with 
density, are known to be often skewed, rather than 
yielding the expected logistic parabola (Schoener, 1973; 
Roughgarden, 1997). It is clear that logistic growth can 
rarely be observed, except approximately in some 
unicellular organisms (Gause, 1934; Leslie, 1957; 
Vandermeer, 1969).   The logistic equation is in continuous 
time, and all its processes are supposed to occur 
instantaneously, and so it does not adequately model 
populations with discrete generations, populations with 
time delays in the response to density, or those with 
complex life histories. These introduce lags, produce 
chaotic fluctuations, and other complications 
(Charlesworth, 1971; Metz et al., 1992).  
 
Nonetheless, if population growth rates per generation are 
small, and especially if densities are near equilibrium, it is 
clear that the continuous time logistic will hold as a useful 
first approximation for population growth (Verhulst, 1838; 
Lotka, 1925; MacArthur, 1972; Hutchinson, 1978), as well 
as in competition and natural selection (León & 
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Charlesworth, 1978). It is a particularly useful first step in 
understanding population regulation in the simplest 
organisms or cases, and many general conclusions from 
logistic models should be true also for more realistic 
situations. Furthermore, the Lotka-Volterra extension of 
the logistic to competition is also unrealistic for the same 
reasons as is the logistic, and will provide a close fit to data 
only rarely. However, like the logistic, Lotka-Volterra 
competition is a useful first approximation. It also holds 
well enough in some cases (Gause, 1934; Leslie, 1957; 
Vandermeer, 1969) to gain important understanding of the 
process of competition among real populations, as well as 
evolution by natural selection.  
 
An important group of non-linear models of population 
growth have 'Allee effects:' the tendency for populations to 
decline at very low densities. The logistic assumes that 
maximal growth is achieved at the lowest possible density, 
but in nature members of a population can facilitate one 
another's survival, for example in group defence against 
predators, or because mate-finding becomes difficult at 
low densities. I do not treat this complication here, 
although the theory has been dealt with a number of times 
since the dawn of population ecology (Kostitzin, 1940; 
Asmussen, 1979; Jacobs, 1984). Logistic assumptions again 
hold approximately, in spite of Allee effects, provided the 
population is near equilibrium.  
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Perhaps the most important reason for clarifying the 
logistic equation and its relation to natural selection is its 
great familiarity due to a long tradition in ecology texts. 
Extending the logistic to cover natural selection is justified 
in part because the greater complexity of adding realism 
obscures the simple connection between ecology and 
evolution. Greater realism compounds still further the 
additional muddle in students' minds engendered by the 
notion of carrying capacity, the problem that forms the 
major focus of the this article. Nonetheless, more advanced 
assumptions can readily be incorporated onto a logistic 
backbone, including non-linear density-dependence, 
extended life histories, and delays in density-dependence 
such as those introduced via discrete-time models. Thus, 
the logistic is a useful a starter toolkit for modelling real 
systems, as well as a simple, clear didactic tool. 
 
HISTORICAL ACCIDENTS LED TO ADOPTION OF THE r-K 

FORM OF THE LOGISTIC 
 
As already mentioned, Darwin employed the term 
'struggle for existence' as a synonym for both natural 
selection and ecological competition, and Fisher's 
Malthusian parameter, (R in equations 1,2) was his 
formalisation of Darwinian fitness. 'The Struggle for 
Existence' later formed the title for Georgii Gause's well-
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known book. Gause viewed his work as an experimental 
investigation of the mechanism of Darwinian natural 
selection rather than merely about ecological competition 
(Gause, 1934). His isocline graphical method for analysing 
competitive equilibria (Gause & Witt, 1935), since then 
widely used in generations of ecology courses, was 
explicitly titled as a paper on natural selection, not 
population ecology. Today, Gause is most closely 
associated with ecology, but before the Second World War 
it is clear that ecological competition and natural selection 
were synonyms. 
 
Educators and theoreticians alike have perpetuated the 
idea that the equilibrium population size, K, is a measure 
of 'carrying capacity' and resource abundance. For 
example: "…[The parameter K] has a ready biological 
interpretation as the carrying capacity of the environment. 
K represents the maximum population size that can be 
supported" (Gotelli, 2008: p. 28; see also Gause, 1934: p. 
34). Intuitively the idea seems to apply particularly well to 
some forms of population control, for example birds with 
limited nesting sites. Gotelli continues: "As an analogy, 
think of the carrying capacity as a square frame that will 
hold a limited number of flat tiles. If the population should 
ever exceed the carrying capacity, there would be more 
tiles than could fit in the frame. The unused portion of the 
carrying capacity is the percentage of the area of the frame 
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that is empty" (Gotelli, 2008: p. 28). [Gotelli here cites the 
1985 edition of C.J. Krebs' (2009) ecology textbook. As we 
shall see it is actually easier to derive a logistic model from 
an argument where the equilibrium population density is 
not equal to the number of spaces for tiles (see the nest-box 
model below)]. However, today's usage of K as a carrying 
capacity in this sense dates only since the mid-20th Century 
(Sayre, 2008). 
 
Raymond Pearl was the first to promote the r-K 
formulation, most influentially (as it turned out) in a 
textbook of medical biometry (Pearl, 1930). Pearl together 
with Lowell Reed had rediscovered the logistic growth 
model (Pearl & Reed, 1920), in ignorance at that time of 
Verhulst's (1838) much earlier paper. Pearl wished to 
estimate limits to human population growth, and 
famously predicted, incorrectly as it turned out, that the 
human population of the USA should level off at K = 197 
millions on the basis of a fit to the logistic. Pearl believed 
that he had discovered a physical law of population 
growth. The predicted equilibrium limits of human 
populations were, for Pearl, among his most important 
findings (Kingsland, 1982; Kingsland, 1985).  
 
Gause wrote his influential book while studying with 
W.W. Alpatov in Moscow. Alpatov himself had worked 
with Pearl in the United States before returning to Russia. 
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Gause and Alpatov adopted Pearl's (1930) method to fit 
their experimental results. The r-K model appears to have 
been used mainly because it helped Pearl, Alpatov and 
Gause to use a double-pass method to fit logistic 
parameters to data on population growth: first determine 
the stable density K, and then use a linear fit of log-
transformed population growth data to estimate r (Pearl, 
1930). Interestingly, even this use of the r-K model for ease 
of fit was unnecessary: they could have used a simpler 

linear fitting procedure from which r and α, or r and K 
could have been estimated in a single pass (Yule, 1925; 
Rhodes, 1940; Crossner, 1977).  
 
Gause's highly original and influential work on 
experimental population ecology, and his subsequent 
collaboration with the mathematician Witt to develop 
Lotka-Volterra isocline analysis (Gause & Witt, 1935) led to 
a virtual fixation on the r-K formulation after the mid-
twentieth century (Kingsland, 1982, Christiansen, 2004: p. 
142). Gause's work and the r-K logistic was followed up 
and strongly promoted in the first major post-war textbook 
of ecology (Allee et al., 1949). In this work, the term 
'carrying capacity' was introduced to the general ecology 
literature, but away from where the logistic was outlined, 
and used in its original range management sense of the 
amount of range that could support a given population. 
Discussing the deer population of the Kaibab plateau of 
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Arizona before predators were hunted out, they opined: 
"pumas and wolves seem to have kept the number of deer 
well below the carrying capacity of the range" (Allee et al., 
1949: 706). It was a few years later that E.P. Odum made 
the first link between carrying capacity and the logistic 
equilibrium K: "…the upper asymptote of the S-shaped 
curve … has aptly been called the 'carrying capacity' or the 
saturation level" (Odum, 1953): 122. This highly influential 
textbook went through many editions, and almost 
certainly led to today's synonymy of K and carrying 
capacity (Kingsland, 1982; Kingsland, 1985; Sayre, 2008). 
Today, the r-K model, and the use of K as a synonym for 
carrying capacity is virtually universal in textbooks, and 
has been taught to generations of undergraduates, 
particularly since the work of MacArthur.  The 
predominant use of the r-K formulation seems clearly due 
to these historical accidents (Christiansen, 2004), although 
very likely helped along by the apparent 'aptness' of K as 
the resource limit or carrying capacity of the environment. 
 

DERIVATIONS OF THE LOGISTIC FROM FUNDAMENTAL 

PROCESSES 
 
A number of approaches have been used to derive 
demographic models from individual processes that 
underlie the population dynamics. These derivations 
might therefore give some clue as to which of r-K 
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(equation 1) or r-α models (equation 2) is the more 'natural' 
form (in so far as we can describe one formulation of the 
same equation as more natural than another). 
 

i. The 'nestbox' model: competition for space 
 
Many people believe that the r-K model is particularly 
reasonable in one case: when there is a conflict among 
individuals for limited space (e.g. see Gotelli's argument 
above). This form of population control is known to exist 
in nature, for example, in certain hole nesting birds. 
Provision of nest boxes can increase the population of 
great tits (Parus major), for example. The number of sites 
appears to represent the carrying capacity, K, in such a 
visualization.  
 
However, it is not easy to construct a mechanistic model 
where all sites are occupied at equilibrium. The simplest 
such model would consider continuous births and deaths 
in an environment with limited space. I call this the 'nest 
box' model (Fig. 1), although the earliest version I have 
found proposes it as a model of trees growing toward a 
limited forest canopy  (Schaffer & Leigh, 1976). 
 
There are T nest boxes, or sites. Supposing each site can 
support one and only one female. Assume that the birth 
rate of individuals occurs at a constant rate b0, and deaths 
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occur spontaneously at a rate d0. Deaths free up 
unoccupied sites. To make the problem simple, we add the 
further assumption that the parent stays, while new-born 
individuals must disperse to another site selected at 
random from all possible sites, and that they survive only 
if the new site is not already occupied (Fig. 1). 

 

 
Fig. 1.  Deriving the logistic via competition for space: the 
nest box model. Births and dispersal are shown in blue. 
Deaths are shown in red. 
 
Suppose N is the population size, b0 is the per capita birth 
rate, while the per capita death rate is d0 plus additional 
deaths due to failure of newborns to find an unoccupied 
site. The probability that each newborn survives due to 
random dispersal to an unoccupied site is (1-N/T). Then 
the overall per capita growth rate of the population 
(Schaffer & Leigh, 1976; Kozlowski, 1980) is: 
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0 0 0

1 dN N
b d b

N dt T
= − −        (3) 

 
 Setting b0 - d0 = r, and the density-dependent death rate 

term b0/T = α, we again have per capita growth rate of r - 

αN: i.e. equation 2. Thus space limitation can be used to 
derive a logistic growth equation, but the so-called 
carrying capacity, K, is less than the total number of 
available spaces, T, by a factor (b0 - d0)/b0 (see also Clark, 
1981).  
 
Although in equation 3 a maximum of only one individual 
is present in every site, this simple model has a close 
relationship to the Levins metapopulation model (Levins, 
1969), in which births are analogous to colonization, and 
deaths to subpopulation extinction. This metapopulation 
model itself generates a logistic function, as is well known 
(Hanski & Gilpin, 1991; Roughgarden, 1998). The model 
can also be extended to multiple species, allowing 
coexistence due to differences of colonization and 
extinction functions, in a process analogous to Lotka-
Volterra stability, called by Roughgarden the "logistic 
weed" model (Tilman, 1994; Roughgarden, 1998).  
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ii. Kostitzin's birth-death model 
 
More generally, one can derive models of population 
growth from simple enumerations of births and deaths, 
without precisely specifying the mechanistic causes. This 
was the approach of (Kostitzin, 1939; Gabriel et al., 2005), 
which has been reproduced recently in a number of 
textbooks (Gotelli, 2008; Pastor, 2008). 
 
The per capita growth rate (R) is given by the difference 
between births (B) and deaths (D) in any instant.  Taking a 
Taylor approximation, density dependence acting on per 
capita birth and death rates might be linear, 0B b Nβ= −  and 

0D d Nδ= + . Then the per capita growth rate is given by:  

 

0 0

1
( ) ( )

dN
B D b d N

N dt
β δ= − = − − +     (4) 

 

Clearly, this is an r-α logistic, with r = b0 - d0 and α = β + δ, 

and the resultant equilibrium K = (b0 - d0)/(β + δ) is directly 
proportional to r, rather than appearing as an independent 
parameter.  
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iii. Partitioning density-dependent and density-
independent population growth parameters 

 
The parameter r in the r-K model is usually called 'the 
intrinsic rate of increase,' which seems to imply its effect 
on growth rate is independent of density. However, r in 
equation 1 is a density-dependent growth parameter in the 
sense that altering it affects the overall per capita growth 
rate, R, in a manner dependent on density. It is simplest to 
show this by taking partial derivatives. For the r-K model 

(equation 1) δR/δr = 1-N/K, and δR/δK = rN/K2.  Thus 
both r and K are density-dependent growth parameters in 
equation 1 (Schoener, 1973). 
 
In equation 2, however, there is a clean separation between 

the density-independent r and the density-dependent α 
parameters of population growth; the equivalent partial 

derivatives are δR/δr = 1, and δR/δα = -N.  Although the 
numerical values of r may be the same in equations 1 and 
2, leading to the confusing idea that r in each case is the 
same parameter, the effect of r is here shown to behave 
curiously differently when densities are non-zero. This 
difference between equations 1 and 2 is especially 
important when we are interested in the parameters as 
genetically determined traits in models of natural 
selection. As I point out below, this has led to considerable 
confusion in the r and K selection debate. 
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We cannot easily infer from these purely mathematical 
considerations which parameterization is more 'natural' – 
the classic version of equation 1, or the simpler polynomial 
equation 2. However, it does seem reasonable that density-
independent effects of birth and death should in nature be 

separate from the effects of crowding, as in the r-α logistic 
(equation 2), rather than being convoluted with them as in 
the r-K logistic (equation 1). 
 
iv. Energy flow, chemical flow, and other considerations 

 
Equations for population growth are closely related to 
those for chemical reaction kinetics (Pearl & Reed, 1920; 
Lotka, 1925). This is unsurprising, as organismal growth 
and reproduction depends directly on chemical reactions. 
Changes in sizes or numbers of organisms depend on 
energy flow and processing of chemicals into different 
states. Thus, we should be able to derive models for 
population growth explicitly from an understanding of 
energy and/or chemical flux. Several such derivations 
have been performed. 
 
Roughgarden (1971: 465-467) developed a discrete-time 
model of population growth based on ecological 
energetics, in which the interest was to "indicate how an 
organism participates in the overall energy through his 
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population." The model assumes conservation of energy, 
and therefore that the energy dissipated by each individual 
must be equal to the energy input. Roughgarden assumed 
that dissipation is liable to increase and that input is liable 
to decrease with density. Assuming linear density-
dependence of dissipation and input, Roughgarden 
derived an energy balance equation that is a discrete-time 
analogue of equation 4, where births are equated with 
inputs and deaths are equated to dissipation.  Schoener 
(1973) introduced a related continuous-time model model 
based on energy flow and density-dependent energetic 
interactions among individuals, where the density-
dependence was linear.  In both cases, the equilibrium 
density, K, represents a balance between density-
independent growth, r, and density-dependent crowding 

effects, α, as in equation 2. As expected, a higher input (or 
lower dissipation) of any energy available, independent of 
density, tends to increase the equilibrium population size. 
Schoener (1973) further generalized his model to non-
logistic functions, and to competition among multiple 
species. 
 
Another approach was to use a conservation of mass 
argument to examine exploitation of a resource by a 
primary producer or consumer (Williams, 1972).  Williams' 
consumption model follows a model close to the Lotka-
Volterra predator/prey model, while ensuring that the 
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mass of the resource and the consumer in a closed (or 
open) system remains the same before and after 
consumption and population changes.  Without going into 
details, systems both open and closed to matter flux lead to 
logistic growth of the consumer with equilibrium density, 
K, proportional to density-independent growth rate, r, as 
in equation 2; see also Pastor (2008) for further details and 
a clear explanation. Similar considerations apply more 
generally to competition among a pair of species for a 
resource. Pastor (2008) concludes "We have therefore 
recovered all the consequences of predator-prey models 
with stable limit cycles as well as the possibility of 
coexistence equilibrium between two competitors, but we 
have done it without the use of K at any level of the food 
web. Therefore, the mass balance constraints of the flow of 
materials through a food web, required by conservation of 
matter, ultimately underlies the stabilities of populations, 
communities, and ecosystems." 
 
An alternative was to bolt classical, density-independent 
population-genetic fitnesses onto a purpose-built 
demographic model of life history, births and deaths for a 
particular organism, Drosophila fruitflies with a discrete-
generation life-cycle (Prout, 1980). When genotypes at a 
single locus that differ in fitness were treated under this 
approach, it was again shown that equilibrium population 
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density was proportional to the density-independent 

growth parameter, r, as in the r-α equation 2. 
 
In all of these various models, where births and deaths are 
treated in some realistic manner as a result of individual 
birth-death, energy flow or chemical flow processes, the 
resultant model can be reduced to a form of equation 4: 

each therefore has the underlying form of the r-α model 
(equation 2). Each of these derivations therefore results in 
an equilibrium population density approximately 
proportional to the rate of increase, r, in addition to its 
control by density-dependent parameters. 
  

HOW THE r-αααα MODEL ALLEVIATES PROBLEMS  
WITH THE LOGISTIC 

i. The controversy over density-dependent versus  
density-independent population regulation 

 
From about 1950 until ca. 1980, a major debate raged over 
the importance of density dependence in regulating 
natural populations.  This controversy is largely over 
today, with most ecologists now in favour of the 
universality of density-dependence (Turchin, 1995). The 
debate was largely stirred up by Herbert Andrewartha and 
Louis Charles Birch, who had argued that population 
levels were determined largely by climate (Andrewartha & 
Birch, 1954). While I do not condone the common 
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interpretation of their argument, it is evident that their 
assertions about density-independent population 
determination were greatly misunderstood.  Andrewartha 
and Birch argued particularly strongly against the extreme 
balance-of-nature ideas of Alexander John Nicholson 
among others, who argued that "competition [i.e. density-
dependence] always tends to cause animals to reach, and 
to maintain, their steady densities" (Nicholson, 1933).  
 
In a little-read passage Andrewartha & Birch (1954:  347-

396) developed the r-α logistic model (equation 2) for 
population density regulation, and then showed that 
density independent factors like climate could, in a sense, 

determine the equilibrium density K = r/α via death rates 
(d0 in equation 4) within the parameter r. They outlined the 
"practical weakness" introduced by Pearl's (1930) r-K 
formulation of the logistic (equation 1) – in particular 
when r < 0 (see (ii) below under Levins' paradox). Much of 
their critique was directed against terms like 'regulation,' 
'balance,' and 'control' when applied to density; they did 
not deny the existence and importance of density-
dependent factors. Their argument that densities were 
largely determined by density-independent factors is true 
in the sense that equilibrium densities might be very 
variable, due largely to climate-induced mortality affecting 
the parameter r, as is likely in the Australian desert 
grasshoppers and other organisms they studied. Similarly, 
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a farmer's regular treatment of insecticides is a successful 
and useful method to reduce equilibrium densities of 
insect pests. This results from the toxin's density-
independent effect on death rates and therefore r, and 
thence to K also (see also Fig. 3 below) (Andrewartha & 
Birch, 1954: p. 662), at least until resistance to the 
insecticide evolves. Their opponents failed to appreciate 
this alternative view of the logistic, and it seems clear in 
retrospect that this misunderstanding considerably 
extended a fruitless debate. 
 
ii. Levins' paradox, and other simple misunderstandings 

of the logistic 
 
As we have seen, equation 1 has often been claimed to be 
unrealistic, and indeed it can behave very oddly indeed. 
Exponential growth (dN/Ndt = r) can be negative as well as 
positive; thus we have no problem imagining that, at some 
times or places, populations may decline, i.e. that r < 0. 
However, when we add density-dependent regulation to 
obtain equation 1, strange results can ensue.  The best 
known case occurs when r < 0, and N0 > K as a starting 
condition: equation 1 predicts a singularity so that 
population growth accelerates until dN/dt → +∞ after a 

finite time 
{ }

||

)/(log 00

r

KNN
t

−
=  (Kuno, 1991). This is the 

'Levins Paradox' of George Evelyn Hutchinson 
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(Hutchinson, 1978; Gabriel et al., 2005). If r < 0 with N0 > K 
we might expect the population to decline to extinction 
rather rapidly: exceeding the carrying capacity should 
reduce population growth still further below zero. Instead, 
a product of two negatives in equation 1 becomes positive 
and the population grows to infinity.  The statistician 
Edwin Bidwell Wilson used this paradox to mock 
Raymond Pearl's law of population growth: when Pearl's 
equation was fit to Canadian data, an infinite human 
population was predicted in Canada by the year 2012 
(Wilson, 1925) – thankfully, another unfulfilled prediction.  
 
To avoid this problem, one is usually advised to deal only 
with populations having positive r; otherwise, the logistic 
model is argued to be pushed beyond its applicable limits. 
However, in theories of the evolution of geographic range 
limits of species, for example, we expect r < 0 in 
unfavourable regions (Kirkpatrick & Barton, 1997; 
Polechová et al., 2009). Similarly, a stochastically 
fluctuating local population should sometimes exceed K 
(Lande et al., 2009); alternatively, it may achieve this 
condition in a deterministic limit cycle or chaotic 
fluctuation due to the existence of time lags in the density 
dependence. Levins' Paradox lends apparent support to 
the idea that the logistic is an inconsistent model of 
population growth. 
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A number of other such paradoxes associated with 
equation 1 are known (Kuno, 1991); for instance, when  
r = 0, the population neither grows nor declines no matter 
how large N is, even if larger than K. This seems just as 
strange (Kuno, 1991).  
 
However, Levins' Paradox and the other 'paradoxes' 
identified by Kuno are all simply resolved on reversion to 

the r-α model (equation 2).  If the logistic equation is ever 

to produce a stable equilibrium, the crowding parameter α 
must be positive, so that the effect on per capita population 

growth, -αN in equation 2, is negative. Then r ≤ 0 in Kuno's 
paradox will always lead to negative population growth 

overall, because the (now unattainable) equilibrium r/α is 
forced to be negative. Thus the paradox for the r-K model 
is caused by the intuitive idea under the carrying capacity 
or resource limit interpretation that one can have a positive 
K when there is a negative r. When r = 0 in equation 2, the 

population will decline at a rate dN/dt = -αN2 , as expected. 
When r is negative, the decline will take place even faster, 
and the speed of decline will always increase with N, as it 
should.  
 

iii. Ginzburg's paradox 
 
Ginzburg (1992) raised a different issue with the logistic; 
his note led to a flurry of replies and comments by other 
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ecologists in Trends in Ecology and Evolution in the early 
1990s. Supposing there is standard logistic growth, except 

that an additional fraction µ of the population is culled; 
this modifies equation (1) as follows: 
 

1
1

dN N
r

N dt K
µ = − − 

                      (5) 

 
"Are the final equilibrium abundances different [between 
equation 1 and equation 5]? Most ecologists will answer 
that the equilibrium values should be the same and that 
the higher rate of reproduction [in equation 1] just means 
that the population will 'get there faster', but reach the 
same level nevertheless" (Ginzburg, 1992).  However, 
contrary to the ideas of "most ecologists," the equilibrium 

changes from K (equation 1) to K(r-µ)/r in equation 5.  
Ginzburg continues: "There are two possible conclusions. 
Either our intuition is wrong or the equation is wrong. I 
tend to side with intuition."  Therefore, "in my opinion, the 
logistic equation, particularly in its common 
parameterization (i.e. equation 1) is one of the greatest 
disservices to theoretical ecology," and is "fundamentally 
unable to serve as a basis for evolutionary conclusions." 
 
However, the equilibrium population density is more 
readily interpreted in an explicit model of births and 
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deaths (equation 4 above) as a dynamic balance between 
density-independent growth and its control by crowding 
(Olson et al., 1992; Gabriel et al., 2005). If so, a reduction in r 
via an extra density-independent mortality is indeed 
expected to cause a reduction in the equilibrium. This is 
more transparently shown under form 2 of the logistic, 
where r is always clearly involved in the equilibrium 
density. The logistic may not represent all aspects of 
density-dependent growth in real populations, but the 
problem is not a fundamental one with the logistic: it is the 
particular formulation 1 and one's interpretation of that 
formulation that is at fault. The problem of intuition occurs 
because we automatically assume that the carrying 
capacity, K, should be a stand-alone parameter that can be 
altered independently of r. 
 
iv. The competition paradox: lack of involvement of r at 
equilibrium 
 
Another frequently mentioned paradox occurs with the 
Lotka-Volterra extension of the logistic equation to a pair 
of species: 
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( )1
1 1 12 2 1

1

1
1

dN
r N N K

N dt
γ= − −       (6a) 

 

( )2
2 2 21 1 2

2

1
1

dN
r N N K

N dt
γ= − −      (6b) 

 

The competition coefficients γ12 represent the effect of 
species 2 on species 1 relative to the effect of its own 

species; vice-versa for γ21.  
 
The problem may be simplest to explain via a personal 
anecdote. We had investigated a narrow contact zone 
between two closely related species of butterfly in 
Ecuador, Heliconius himera and H. erato. The species 
hybridize at a low rate, but behave mostly like separate 
species (Jiggins et al., 1996).  They are nearly identical in 
size and overall ecology. Indeed, they do not differ in host 
plant preference, and major host plants, which control 
butterfly population density, occur throughout the contact 
zone (Jiggins et al., 1997).  These findings tend to persuade 

one that γ12 ≈ γ21 ≈ 1, and that the host-plant-related 
carrying capacities in any site along the zone should also 

be approximately equal, i.e. K1 ≈ K2, yet H. himera is 
restricted to gallery forest in savannah conditions in drier, 
higher altitude sites, while H. erato occurs only in humid 
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rainforest to the N and W. The narrow (5 km wide) contact 
zone occurs in a zone of transition between forest types: 
the two species appear to exclude each other across this 
aridity gradient. I had initially imagined that intrinsic (i.e. 
density-independent) rates of increase r were higher for H. 
himera in the drier upland forest, while H. erato has higher r 
in the wet lowlands.  This is similar to the assumptions 
used in models of range limits in the absence of 
competition among species (Kirkpatrick & Barton, 1997; 
Polechová et al., 2009). 
 
Yet as is well known from the Gause-Witt analysis of the 
isoclines of equation 6, where dN1/dt = 0 and dN2/dt = 0, 

depend only on the relative values of K and γ, and not on 
values of r.  Geographic variation in r1 and r2 should, 
according to this model, be able to explain neither the 
competitive exclusion of each species, nor the narrowness 
of the contact zone if each species is at equilibrium 
densities. The approximate equality of K between the 

species with γij = 1 should lead to approximate neutral 
stability. Any differential specialization by each species 

would lead to γij < 1, and so to stable coexistence and a 
broad zone of stable contact, rather than a narrow zone of 
replacement as found. 
 
Many others have puzzled over this "particular 
shortcoming" of the Lotka-Volterra competition model 
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(e.g. Begon 2006: 237). The intrinsic growth rate r seems an 
excellent candidate for a component of fitness in 
evolutionary biology, and is used in this way in classical 
population genetics incorporating constant selection, for 
example as would occur in exponentially growing 
populations. How then can it not affect the joint equilibria 
between species or populations that are density regulated? 
This seems to pose a major problem in generalizing 
between natural selection within species and the 
population dynamics of competition between species. 
 
Before dealing with the problem, we should note that r 
does have other effects in equation 6. For instance, the rate 
that equilibrium is attained depends on r (Roughgarden, 
1971), and so does the stability of equilibria in models with 
≥ 3 species (Strobeck, 1973). Furthermore, outcomes of 
competition in equation 6 under regular or stochastic 
environmental fluctuations also depend on r 
(Roughgarden, 1971; Lande et al., 2009). However the lack 
of involvement of r in isoclines (single species equilibria) 
under deterministic competition remains puzzling 
(Maynard Smith, 1998): p. 19). So what is wrong? Maynard 
Smith concluded simply that "this is an unfortunate feature 
of the logistic," and without resolving it, developed an 
alternative ecological model of density-dependent natural 
selection in which the equilibria depended on r. 
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Maynard Smith's reaction is not unusual (or of course, in 
any way wrong). However, he apparently did not realize 
that such ideas depend on one's interpretation of 
formulation 1 of the logistic.  Instead of equation 6, if we 

extend the original r-α Verhulst formulation 2 to Lotka-
Volterra competition, we obtain:  
 

1
1 11 1 12 2

1

1 dN
r N N

N dt
α α= − −      (7a) 

 

2
2 22 2 21 1

2

1 dN
r N N

N dt
α α= − −      (7b) 

 
Equation 7 is now in the original form of the first 
ecological competition models (Lotka, 1925; Volterra, 
1927), and in Kostitzin's case (Kostitzin, 1939), of his model 
of natural selection in density-regulated populations.  
 
After adopting Pearl's r-K logistic for curve fitting, Gause 
(1934) and Gause & Witt (1935) were apparently also the 
original promoters of equation 6 rather than equation 7. As 
Gause (1934) was the source of most post-war scientists' 
understanding of competition, equation 6 rather than 
equation 7 is the form now virtually universal in 
textbooks. (Note: although an unimportant detail for our 
purposes here, my rendering of equation 7 here 
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parameterizes interspecific competition (as well as 
intraspecific competition) in a slightly different way from 
that usually adopted in today's r-K models (equation 6), in 

that γ12 = α12/α11 and γ21 = α21/α22).  
 

 
 

Fig. 2. Gause-Witt isocline analysis of Lotka-Volterra 
competition, using equation 7. The isocline for each species 
i is the line on the N1/N2 phase plane where dNi/dt = 0. Joint 
equilibria are shown as filled circles (stable) and hollow 
circles (unstable). 
 



Mallet: The Struggle for Existence 39

Equation 7 is as suitable as equation 6 for textbooks of 
ecology, coupled with Gause & Witt isocline analysis, 
providing we overcome our educational training in late 
20th Century carrying capacity ideas. After trying this out 
for the first time at Harvard (spring 2012), my teaching 
assistants and I believe that equation 7 is even somewhat 
simpler and more intuitive for teaching.  For instance, a 
revised Gause & Witt graphical isocline analysis is shown 
in Fig. 2.  
  
As can be seen from Fig. 2, the isocline method is 
unchanged, except that the isocline for each species now 
crosses axes at heuristically reasonable values of 
population size determined by a balance between the 
intrinsic rates of growth for that species and the locally 
important competition/crowding coefficient, depending 
on which form is most abundant. 
 
Recent theory has used microscopically derived birth-
death models (similar to equation 4) in order to investigate 
multispecies coexistence conditions in individual-based 
models of spatially structured populations (Law et al., 
2003; Murrell, 2010): these models will naturally result in 

local demography similar to an r-α Lotka-Volterra model, 
and they therefore avoid the problems of the r-K model. 
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EMPIRICAL EVIDENCE FOR THE PROPORTIONALITY OF K TO r 
 
So far, we have seen that the use of the carrying capacity, 
K, as a parameter in the logistic can be misleading, and 
that it can avoid confusion to view the equilibrium density 
as a balance between opposing density-independent (r) 

and density-dependent (α) parameters (K = r/α ).  In this 
section we explore empirical evidence for a relationship 

between K and r. If r and α are in a sense the "real" 
parameters, whereas K is a compound parameter derived 
from these, equilibrium density should sometimes change 
in direct proportion to density-independent factors that 
affect r. If on the other hand, K is a "real" parameter in its 
own right, we might expect no effect on K of changing r 
experimentally, as in Ginzburg's intuition (above). 
Interestingly, Andrewartha & Birch (1954: p. 392) 
attempted to search for experimental evidence for 

proportionality of r and K in support of their r-α model, 
but were unable to find any at that time. Today, 
considerably more data is available. 
 
Kuno (1991) cites data on three rice-feeding leafhoppers of 
the genus Nephotettix reared at different temperatures 
(Valle et al., 1989). These treatments affected both the initial 
population growth (r) and the carrying capacity (K). When 
log r was plotted against log K, a slope of 0.935 was 
achieved explaining 59% of the variance; however, when 
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the effect of r was removed by plotting r/K = 1/α  against 
K, there was a non-significant slope of 0.065 explaining 
only 0.7% of the variance. Thus we might conclude that the 
main effect of the treatment was to alter r rather than the 

crowding effect α, and through this density-independent 
effect, the carrying capacity, K.   
 
Another example is from the environmental toxicology 
literature. When low doses of toxic chemicals and 
pollutants are added to water bodies (a purely density-
independent effect), the equilibrium densities of many 
species are reduced along with their intrinsic rate of 
population growth, r.  Hendriks et al. (2005) performed a 
meta-analysis on many such data for different toxic 
compounds (both organic and inorganic pollutants), and 
on different species (total of 128 studies overall). They 
plotted the fraction K(treated)/K(untreated) against the 
fraction r(treated)/r(untreated) for each experiment. 
Again, there was a strong correlation explaining 48% of the 
variance between these relative measures K and r, with a 
slope of 0.94 (Fig. 3). Understanding these principles could 
have important conservation implications for 
understanding the population densities of toxin-sensitive 
species in polluted environments (Hendriks & Enserink, 
1996).  
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Fig. 3. Effect of toxin treatment on population growth 
parameters of aquatic species (Hendriks et al., 2005). 
Reproduced with permission from John Wiley and Sons 
and the authors. 
 
 
In both the Kuno study and the Hendriks et al. study, the 
slopes were not far from unity.  Given that r represents the 
difference between the density-independent birth and 
death rates we expect a reduction in r and a corresponding 

reduction in K = r/α when the death rate is increased or 
birth rate is decreased through toxin treatment, under 
equation 4, by the same factor, giving a slope of 1 when log 
K is plotted against log r (Kuno, 1991), or where the 
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relative values of K are plotted against relative values of r 
(Hendriks et al., 2005).  
 
Similar experiments with strains of bacteria or protists also 
gave strong positive correlations between r and K 
(Luckinbill, 1978; Luckinbill, 1979; Fitzsimmons et al., 
2010). The close match of all these experiments with the 

expectation from the r-α model argues strongly that 
equation 2 encapsulates the real mechanistic structure of 
the logistic better than equation 1, where K was assumed 
independent of r. (Note, this was in spite of likely 
tradeoffs; see discussion of r and K selection below). 
 

NATURAL SELECTION AND LOTKA-VOLTERRA 

COMPETITION 
 
Crow & Kimura (1970) made an important attempt to 
unify a theory of natural selection with Lotka-Volterra 
competition. Their main interest was to vindicate the 
constant-selection population genetic models of Fisher in 
continuous time, and those of Wright in discrete time. Both 
Fisher (1930) and Haldane (1924) had originally justified 
their selection models in demographic terms, but their 
treatments were sufficiently sketchy to lead to an 
assumption that both were treating natural selection only 
under the simplest assumption of exponentially growing 
populations.  Fisher's treatment was certainly interpreted 
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in this way by (MacArthur, 1962). However, it is clear that 
Fisher's fitness measure, his 'Malthusian parameter' 
(denoted R in this paper) included density-dependent per 
capita growth, and was not merely a constant r parameter 
(Fisher, 1930, pp. 42-46). 
 
The simplest case of natural selection supposes that 
populations of haploid alleles, haplotypes, or clonal 
genotypes compete by growing at different rates. The goal 
here is to understand how changes in frequency p of a 
focal haplotype or allele 1 emerges from population 
growth. By analogy with equation 4, we compare the per 
capita growth in density, n1, of the focal haplotype 1 with 
that of all other haplotypes, n2, in a population of total 

density 21 nnN += : 

 

1
1 1 1

1

1 dn
R B D

n dt
= = −        (8a) 

2
2 2 2

2

1 dn
R B D

n dt
= = −        (8b)  
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Fig. 4. Constant selection in exponentially growing and density-
regulated populations. A. Exponentially growing population: S = r1 – r2 
= 0.024 – 0.021 = 0.003. Haplotype 1 is initially at low density, but 
eventually replaces haplotype 2. A segment of the trajectory where 
haplotype 1 begins to overtake haplotype 2 is shown.  B. Natural 
selection under generalized haploid Lotka-Volterra competition 
(equation 10), showing constant, density-independent selection: r1 = 

0.055, r2 = 0.05, α11 = α22 = α12 = α21 = 0.001. C. The replacement of 
haplotypes in the exponentially growing population (see A), on a logit 

frequency scale, [ ]10log / (1 )p p− . The constant slope is / log 10 0.0013=
e

S . 

D. Replacement of haplotypes in a density-regulated population (see B), 
on a logit scale. Density-independent replacement continues throughout 
the trajectory, in spite of the switch between non-equilibrium to 
equilibrium population dynamics at approx. generation 100 (see B). The 

constant slope is / log 10 0.0022=
e

S .  
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Meanwhile, the entire population grows according to: 
 

1 1 2 2

dN
R n R n

dt
= +               (8c) 

 
The birth and death rates, B1, D1, B2, and D2 , and therefore 
R1 and R2 are functions that may depend on allelic 
densities n1 and n2 as in equation 4. Generalizing a result 
from Crow & Kimura (1970), who themselves 
acknowledged the methods of Leigh (1971), we find that 
the rate of change of haplotype frequency, p, is as follows 
(from Appendix 1 equation A1.4): 
 

{ }1 2 (1 )= − −
dp

R R p p
dt        (9) 

 

{ }1 2S R R= −  measures the strength of Fisherian natural 

selection. The values of R measure haplotype fitnesses 
which depend, in general, on haplotype density because of 
their basis in density-dependent viability and fertility. If S 
depends on N but not p we consider that the selection is 
density- but not frequency-dependent. If S varies with p, 
selection is frequency-dependent.  
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If R1 = r1 and R2 = r2 are constants as in the case of 
exponential population growth, then their difference is 
also a constant, so that selection, S,  is by definition 
density-independent and frequency-independent. 
Interestingly, the haplotype frequency under this constant 
selection model grows as a logistic (Crow & Kimura, 1970) 
even while density is growing exponentially. Because 
equation (9) with constant r1 and r2 is itself a logistic 
equation, a logit transformation linearizes haplotype 
frequency evolution (Fig. 4 A,C).  However, constant 
selection can also occur when there is density-dependent 
regulation.  
 
This is readily shown by substitution of Lotka-Volterra 
population dynamics into equation 9 (from equation A1.6 
in the Appendix), first shown by Smouse (1976):  
 

( ) ( ){ }1 2 11 21 22 12 (1 ) (1 )
dp

r r p p N p p
dt

α α α α = − − − − − − −      (10) 
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Fig. 5.  Natural selection in density-regulated populations 
(equation 10). A. Haplotype density where selection increases 

density: r1 = 0.10, α11 = 0.001, r2 = 0.03, α22 = 0.0005, and γ12 = 1/γ21 = 

1.5. In Figs. 5-6, inversely related γ are used to give parallel 
isoclines, ensuring directional selection.  B. Haplotype density 

where selection decreases density: r1 = 0.03, α11 = 0.0006, r2 = 0.05, 

α22 = 0.0005, and γ12 = 1/γ21 = 0.44. C. Replacement of haplotype 
frequency in A. Initial rate of replacement is 

( )1 12 2 22/ / log 10 0.0043α α− ≈er r ; final slope is  

( )2 21 1 11/ / log 10 0.0014α α− ≈er r  (see equation A2.5). D. Replacement 

of haplotype frequency in B. 
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Classical density-independent and frequency-independent 
selection ('constant selection,' Fig. 4 B,D) can result in 
density-regulated populations if the per capita density-
dependent effects of each species on the other are the same 

as on its own species (i.e. if   α11 =α21 and  α22 = α12) 
(Appendix 2, case 2). The gene frequency trajectory is 
identical to that under exponential growth (compare Fig. 4 
C,D), whether the population is near to or far from 
equilibrium (Fig. 4 B). More generally, these conditions 
will not pertain, and natural selection will be both 
frequency-dependent and density-dependent (Smouse, 
1976). However, the density-independent effects of r1 and 
r2 are in essence the 'main effects,' and that the effects of 

the α parameters are second order, 'interaction effects' 
between haplotypes; it can be envisaged that differences in 

α values will tend to be smaller between haplotypes than 
the differences due to intrinsic birth and death rates that 
are components of r values. If so, most evolution by 
natural selection within species may indeed be 
approximately independent of density and frequency. 
 
Although equation 10 is relatively simple, a total of six 
parameters control population regulation and the strength 
of natural selection for two haplotypes, so the behaviour is 
correspondingly rich. Even this most basic, haploid model 
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of natural selection in density-regulated populations can 
produce anything from constant selection (Fig. 4 B,D), to 
frequency- and density-dependent natural selection, as 
well as "hard" (Fig. 5) and, approximately also, "soft" 
selection (Fig. 6) (Table 1, Appendix 2). Selection may 
increase or decrease equilibrium density (Fig. 5), or leave it 
relatively unaffected (Fig. 6), depending on parameter 
values.  
 
Non-linear evolution of logit frequency (Figs. 5-6) provides 
a useful definition of frequency-dependent selection. Also, 
I follow Christiansen (1975) in referring to soft selection as 
selection that does not alter population density; hard 
selection is selection that alters population density. 
Internal equilibria may exist, but stable polymorphism in a 
haploid model requires frequency-dependent selection; 
neither density-independent selection, nor density-
dependent selection alone are sufficient to allow stable 
polymorphisms (Table 1, Appendix 2). 
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Fig. 6.  Approximately pure frequency-dependent selection 
(equations 10, A2.4). A. No change in equilibrium density 
among haplotypes, but a temporary rise in population 

density occurs during replacement: r1 = 0.15, α11= 0.00015, 

r2 = 0.02, α22= 0.00002, and γ12 = 1/γ21 = 0.6.  B. No change 
in equilibrium density among haplotypes, but a temporary 
fall in population density occurs during replacement: r1 = 

0.05, α11= 0.00005, r2 = 0.15, α22= 0.00015, and γ12 = 1/γ21 = 
0.6.  C, D. Replacement of haplotype frequency in A, B, 
respectively. 
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DIPLOIDY AND NATURAL SELECTION IN DENSITY-

DEPENDENT POPULATIONS 
 
The above results apply only to the simplest clonal 
organisms. In sexual diploids, there can be genic selection 
equivalent to haploid selection provided demographic 
parameters of heterozygotes are intermediate (Kimura, 
1978). More generally, selection involves competition 
among sexual diploids: at its simplest among three 
genotypes at a biallelic locus, A1A1, A1A2, and A2A2. In 

haploids, the only interactions were α parameters among 
haplotypes or alleles within populations. Diploidy 
introduces new potential interactions among mating 
individuals, as well as intra-genotype interactions due to 
dominance and heterosis, and variation among progenies 
of each genotype (Smouse, 1976). Births and deaths occur 
at different times during the life cycle, and can be affected 
by density-dependence differently. All these combine in 
complex ways with the purely competitive interactions 
discussed above for haploids (Appendix 3).  
 
The difficulty of analysing diploid models has been 
exacerbated still further by opaqueness introduced by the 
r-K logistic formulation, and in many cases by additional 
complexity due to discrete generations. To save space, I 
briefly discuss earlier results for sexual diploids but do not 



Mallet: The Struggle for Existence 53

deal with the mathematics. Selection among diploids has 
been explored both in continuous-time models (Kostitzin, 
1939; MacArthur, 1962; Smouse, 1976; Desharnais & 
Costantino, 1983), and in discrete-time Wrightian models 
(Roughgarden, 1971; Charlesworth, 1971; Anderson, 1971; 
Asmussen & Feldman, 1977; Anderson & Arnold, 1983; 
Asmussen, 1983b). Since weak selection in discrete 
generations can be approximated by a continuous-time 
equivalent, I here ignore the additional paradoxes and 
chaotic behaviour introduced by discrete time (Cook, 1965; 
Charlesworth, 1971; May, 1974; Asmussen & Feldman, 
1977; Asmussen, 1983b). These problems do not occur 
under weak selection and can be eradicated by using 
arguably more appropriate discrete time formulations (e.g. 
equation 20 in Asmussen and Feldman, 1977).  
 
In MacArthur's original analysis (MacArthur, 1962), 
genotypes were assumed to differ in values of K, but 
selection depended only on total density of all three 
genotypes N = n11 + n12 + n22 equivalent in a Lotka-Volterra 

formulation to the assumption that  γij,kl = 1 ∀ ij≠kl (where ij 
and kl each represent one of the diploid genotypes 11, 12, 
22 in a diploid version of equation 6; see Appendix 3). This 
is purely density-dependent selection, equivalent to 
MacArthur & Wilson's K selection (MacArthur & Wilson, 
1967). Unlike the equivalent haploid/asexual model 
(Appendix 2, case 3), polymorphic equilibria are possible  
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Fig. 7. Replacement of diploid alleles under selection, showing 
three-phased evolution of genotypes 11, 12, and 22 (equation A3.1). 
A. Genotypic densities with classical density-dependent selection: 

r11 = 0.02, r12 = 0.05, r22 = 0.20, α11,11 = 0.00087, α12,12 = 0.00027,  

α22,22 = 0.00200, and γij,kl = αij,kl/αij,ij = 1 for all other i,j,k,l.  B. 
Genotype densities with generalized diploid selection, including 
frequency- and density-dependent selection: r11 = 0.10, r12 = 0.03,  

r22 = 0.20, α11,11 = 0.0002, α12,12 = 0.00037, α22,22 = 0.00154, and  

γ11,12 = γ11,22  = γ12,11 = γ12,22  = 1.15 and γ22,11 = γ22,12  = 1/1.15.  C,D. 
Haplotype frequency evolution of A,B, respectively. In C, 
approximate three-phase evolution is clearly visible as each of the 
three genotypes replaces the previous one successively (see A). 

0

20

40

60

80

100

120

140

0 500 1000 1500 2000

generations

d
e
n
s
it
y

n11

n22

N

n12

0

20

40

60

80

100

120

140

0 500 1000 1500 2000

generations

d
e
n
s
it
y

n11

n22

N

n12

-2.50

-2.00

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

0 500 1000 1500 2000

generations

lo
g
it
 p

-2.50

-2.00

-1.50

-1.00

-0.50

0.00

0.50

0 500 1000 1500 2000

generations

lo
g
it
 p

A 

B 

C D 



Mallet: The Struggle for Existence 55

with selection on diploids. If heterozygotes are 
intermediate, K11 ≥ K12 > K22 , then haplotype 1 replaces 
haplotype 2 (Fig. 7 A,C), and vice-versa for opposite signs.  
If there is heterosis (overdominance, or higher fitness of 
heterozygotes) for K, i.e. K11 < K12 > K22, stable 
polymorphisms result at equilibrium (Fig. 7 B,D; the 
reverse inequality, underdominance, gives an unstable 
polymorphic equilibrium) (Kostitzin, 1936; Kostitzin, 1939; 

MacArthur, 1962). Equivalent heterosis under the r-α 
model, the diploid equivalent of equation 7, can be 

obtained by noting that Kij = rij/αij,ij (Appendix 3). Purely 
competitive equilibria or declines in population size are 

not possible when γij,kl = 1 ∀ ij≠kl as in MacArthur's 
analysis (Appendix 2, case 3 for haploids), and in most 
other treatments of diploid density-dependent dynamics 
(Roughgarden, 1971; Anderson, 1971; Asmussen, 1983b). 
On relaxing the pure density-dependent assumption, 
much richer behaviour emerges, with combinations such 
as heterozygous advantage accompanied by equilibrium 
population decline possible (Fig. 7 B,D). In her analysis of 
a discrete-time analogue, Asmussen (1983b) found up to 
four possible interior equilibria, up to two of which could 
be stable; however, complete analytical results were 
impossible to obtain. 
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HISTORY OF EQUATION 10 

 
The history of these discoveries is somewhat obscure, and 
is not found in textbooks. Crow & Kimura (1970), while 
writing their influential population genetics textbook were 
concerned to justify classical population genetical 
constant-selection models in terms of density-dependent 
demography (Kimura & Crow, 1969; Crow & Kimura, 
1970). The problem with doing this was that r-K Lotka-
Volterra dynamics apparently excluded constant selection 
at density equilibrium (because r is not involved in 
equation 6, paradox (iv) above). Thus it seemed that the 
intrinsic rate of increase, r, could not be involved 
universally in natural selection, and that all selection in 
density-regulated populations near equilibrium must 
therefore be density-dependent.   
 
MacArthur (1962) had earlier argued for the same reason 
that "the carrying capacity of the environment, K, replaces 
fitness (i.e. Fisher's Malthusian parameter, r, which 
MacArthur interpreted as a constant) as the agent 
controlling the action of natural selection."  Crow & 
Kimura nonetheless argued for their most general case 4 
(equation A2.2b) that the selection "is in many cases ... 
changing slowly": even though selection does change with 
density and gene frequency, it might be approximately 
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constant for a while [León & Charlesworth (1978) also 
made a similar argument].  Crow & Kimura were also able 
to find another special case (their case 2) of equations 6 
where differences in r alone generated constant selection, 
but this required that density-dependent control was the 
same on each of the two haplotypes (in spite of differences 
in r).  Because regulation of density involves parameters of 
both r and K, this would imply a peculiar form of density 
regulation in which the rate of increase of the second 
species, rather than just the density of that species, plays a 
role in regulating the density of the first species, and vice-
versa. This seems a rather artificial form of density control. 
 
Furthermore, Crow and Kimura used a version of equation 

7 (i.e. a simplified r-α model, their case 3) to show that 
mere differences in r would give rise to constant selection.  
However, Crow and Kimura regarded this Verhulstian 
logistic as "weaker population control", and supposed that 
"this situation is probably quite unusual in nature" 
compared with the r-K model, even though equation 7 
merely represents a change of variables compared to 
equations 6.   
 

In fact, Kostitzin (1936) had analyzed a diploid r-α model 
of competition much earlier (equivalent to equation 10), 
and had briefly stated some major results, including that 
constant selection, and heterozygous advantage were 



Mallet: The Struggle for Existence 58

possible outcomes. However, Smouse (1976) was the first 
and until this paper the only person to state equation 10 
explicitly, as well as to generalize this result to diploids 
and investigate its behaviour in detail. Most population 
genetics texts, in contrast to that of Crow and Kimura 
(1970), completely ignore the problem that selection will 
generally occur in density-regulated populations, and that 
it will in general lead to frequency- and density-dependent 
selection. They instead appear to view density- and 
frequency-dependent selection as rather specialised areas 
of interest: for example, density-dependent selection (e.g. 
(Hartl & Clark, 2007), p. 231), and frequency-dependent 
selection (Hartl and Clark, 2007, p. 230). Models of 
frequency-dependent selection are normally developed 
without any explicit demographic rationale, a tradition I 
myself have previously followed (Mallet, 1986; Mallet & 
Barton, 1989).  
 
The puzzle of why Wrightian mean fitness is not 
maximized under frequency-dependent selection in such 
non-demographic models (Hartl & Clark, 2007) is related 
to the finding that densities can decline under frequency- 
and density-dependent selection (Table 1, Fig. 5). Under all 
scenarios, including these special cases, evolution climbs a 
Malthusian fitness "hill" towards a state with the highest 
local instantaneous growth, Ri at any one time. However, 
the fitness landscape itself changes during evolution and 
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population growth, so that the end result is always R = 0 at 
equilibrium (Fisher, 1930; Metz, 2011). 
 
An exception to general avoidance of the topic of density-
dependent populations by recent population genetics texts 
is found in Barton et al. (2007, p. 468, their Fig. 17.15 D,C).  
Like Maynard Smith and Crow & Kimura, Barton et al. 
were concerned to show how a constant-selection model 
could result in a demographic context. A graphical 
presentation was used to show that density-independent 
selection could readily result within density-regulated 
populations (in this case, the model demonstrated the case 
using a simplified discrete-time logistic growth equation 
(Ricker, 1954). Models of selection for host evolution of 
resistance to pathogens provide another exception (Koslow 
& DeAngelis, 2006). This model incorporates both host and 

pathogen population dynamics and results in an r-α model 
giving frequency-dependent selection, but this general 
approach seems not to have become a mainstream method 
in population biology.  
 
Clearly, many mathematical population biologists fully 
appreciate the relationship of population dynamics to 
population genetics (Fisher, 1930; Kostitzin, 1939; Metz et 
al., 1992; Christiansen, 2004; Meszéna et al., 2005; Barton et 
al., 2007). Nonetheless, I have yet to see these findings laid 
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out clearly in any mainstream population genetics or 
population ecology text. 
  

THE CONTROVERSY OVER DENSITY-DEPENDENT  
SELECTION: r AND K SELECTION 

 
In 1967, MacArthur & Wilson, following on from 
MacArthur (1962) proposed that natural selection could be 
of two forms, 'r selection,' and 'K selection,' on the basis of 
an r-K model similar to equations 6 (p. 149): 
 
"We have now replaced the classical population genetics of 
expanding populations, where fitness was r, as measured 
in an uncrowded environment, by an analogous 
population genetics of crowded populations where fitness 
is K…"  
 
"In an environment with no crowding (r selection), 
genotypes which harvest the most food (even if wastefully) 
will rear the largest families and be most fit. Evolution 
here favors productivity. At the other extreme, in a crowded 
area, (K selection), genotypes which can at least replace 
themselves with a small family at the lowest food level will 
win, the food density being lowered so that large families 
cannot be fed. Evolution here favors efficiency of 
conversion of food into offspring—there must be no 
waste."  
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See also MacArthur (1972, pp. 226-230) for elucidation. 
These inferences are approximately correct for selection-
based derivations of Appendix 2 case 3, equation A2.3b. 

MacArthur's (1962) implicit assumption was that γ12 = γ21 = 
1 in equation 6 (as in equation A2.3b), so that the crowding 
effect on each form by its competitor was the same by its 
own species, giving what became the usual purely density-
dependent selection assumption for diploids (Table 1, 
Appendix 2,3). Intrinsic rates of increase, r, are apparently 
unimportant near equilibrium density, and the superior 
competitor is the form with the higher K. However, if 
densities are much lower than the equilibrium, as in newly 
arrived colonizer species, then the situation is similar to a 
pair of species competing under pure r selection during 
exponential growth, and the form with the higher r will be 
superior. 
 

However, under the r-α models of equations 7, 10, and 
A2.3a, constant selection is possible regardless of density, 
with populations differing only in r and not in crowding 

parameters, α (Fig. 4, Appendix 2, case 1).  Here, because 

the equilibrium K = r/α, differences in either r or α control 
fitness as well as K (equation 9). The apparent replacement 
of Fisherian fitness, R, by the equilibrium density, K 
(MacArthur, 1962; MacArthur & Wilson, 1967) can be 
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interpreted as due to this involvement of r in K as well as 

to the density-dependent control parameters, α. 
 
The MacArthur-Wilson r vs. K selection ideas initiated a 
strong debate among ecologists and evolutionary 
geneticists after its publication. A postdoctoral associate of 
MacArthur's expanded the idea and argued that species 
could be classified as to whether they fell into r and K 
selected ecological syndromes (Pianka, 1970). MacArthur 
and Wilson's idea was based on a logistic-like model with 
instantaneous life history. They assumed a trade-off 
between r and K: selection for a high intrinsic growth rate r 
to cope with non-equilibrium conditions would reduce 
carrying capacity K; selection for competitive ability near 
equilibrium density would impinge negatively on 
reproductive rate. With Pianka's extension of the idea, r 
and K selected species became viewed as having 
alternative life history strategies: r selected species were 
those that bred early, had many, small offspring, and 
tended to be short-lived colonizing forms, generalists, and 
often semelparous; K selected species bred late, were 
iteroparous, long-lived, had few, large offspring, dispersed 
little, and were characteristic of stable environments. 
Pianka's work was particularly influential via many 
editions of his evolutionary ecology textbook (Pianka, 
1974). 
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The ideas of MacArthur & Wilson (1967) and extensions by 
Pianka (1970) had been presented as largely verbal 
arguments. Sewall Wright's discrete-generation population 
genetic models were then in vogue among population 
geneticists. The mathematical treatments of the MacArthur 
& Wilson ideas by Roughgarden (1971) and Anderson 
(1971) therefore employed discrete-generation Wrightian 
fitness: logistic growth Lotka-Volterra equations were 
formulated as per generation r-K difference formulations. 
In both cases density was regulated by the total population 
density, leading to purely density-dependent fitnesses (as 
in equation A2.2). Both r and K could vary among 

genotypes. These assumptions are equivalent to setting γ12 

= γ21= 1 in a discrete-generation form of equation 6, or that 

α11=α12, and α22=α21 in equation 10. These investigations 
confirmed the basic findings of MacArthur & Wilson: in a 
stable environment, the allele specifying the highest value 
of K would prevail. In a harsh or seasonal environment 
that resulted frequently in a reduction of population size 
below carrying capacity, the allele with the higher r would 
dominate.  
 
Experimental tests for trade-offs between r and K selection 
were often not successful. In Luckinbill's experiments 
which selected for higher growth rate under both low 
density (r) and high density (K) conditions, there was no 
evidence for the expected trade-offs. In E. coli, selection 
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largely at density equilibrium (i.e. K selection) led to the 
fitter strains overall, which also had higher r than 
populations selected during continued rapid growth 
maintained by dilution (r selection) (Luckinbill, 1978). In 
Paramecium, selection for growth rate at low density (r 
selection) led to populations with higher equilibrium 
densities (K) (Luckinbill, 1979). These results are of course 
expected if the carrying capacity, K, is a direct function of 

r, as expected from the r-α model of equation 2. This effect 
very likely explains why comparisons of strains within 
Paramecium primaurelia, as well as of species of ciliates in 
the genera Paramecium, Tetrahymena, and Colpidium all 
showed strong positive correlations between r and K 
(Luckinbill, 1979). Antibiotic-resistant mutant strains of 
Pseudomonas fluorescens also showed tight positive 
correlations between r and K (Fitzsimmons et al., 2010). 
These experiments and comparative analyses all suggest 
strong, direct linkage between intrinsic rate of increase and 
equilibrium density that masks any interaction that may 

result from real tradeoffs between r and α.  
 
Long term work by Laurence Mueller and Francisco Ayala 
did find some of the expected trade-offs in work with 
Drosophila, but these were not always as expected. In an 
early experiment, the growth rates of isofemale lines 
reared at low densities were positively correlated with 
their performances at higher densities, including at and 
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above carrying capacity for rearing conditions used 
(Mueller & Ayala, 1981). This provides no evidence of 
trade-offs between fitnesses at high and low density. 
However, with populations selected to grow at low and 
high densities, there did appear to be a slight trade-off 
with populations accustomed to high densities (K selected 
strains) performing slightly better at high density than 
populations accustomed to low densities (r selected 
strains), and vice-versa (Mueller & Ayala, 1981).  The 
existence of strong positive correlations in low and high 
density fitness across all strains are almost certainly due to 
the positive effect of r on K and on overall density-
dependent fitness expected from equation 10; the evidence 
for differential fitness found for low and high density 
adaptation does point to the existence of some trade-off 

between r and α parameters in equation 10. Three decades 
of laboratory experimental work on selection in density-
dependent populations and its relation to theory have been 
recently reviewed (Mueller, 1997; Mueller, 2009). 
 
Today, the ideas of r and K selection are still discussed in a 
few textbooks, but many now omit the topic altogether 
(Ricklefs, 2008), or disparage it (Gotelli, 2008). The recent 
volume celebrating the 40th anniversary of the publication 
of MacArthur & Wilson's "The Theory of Island 
Biogeography" (Losos & Ricklefs, 2010) makes no mention 
of r and K selection. This is astonishing: at the time of their 
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first publication, r and K selection were viewed as among 
the most seminal and widely celebrated ideas to emerge 
from population ecology. Today the testability of the idea 
seems limited, especially when extended into life history 
theory (Stearns, 1977; Boyce, 1984; Mueller, 1997; Gotelli, 
2008). A particularly clear account points out that the 
majority of life history theory, including trade-offs among 
parameters at different life stages, can be developed 
focusing purely on r, with little account taken of density-
dependent regulation (Reznick et al., 2002). This is more 

valid under r-α models than it appears to be under r-K 
models of selection (e.g. equation A2.3b) because 
differences in r have strong effects on fitness whether 
populations are near or far from equilibrium density in 
equations 10 or A2.3a: indeed it is identical to that in 
exponentially growing populations (Fig. 4). 
 

DENSITY-REGULATED POPULATIONS AND ADAPTIVE 
SPECIATION 

 
Two major principles underpinned Darwin's theory for the 
origin of species. First was "the struggle for existence", or 
ecological competition.  Second was "the principle of 
divergence," today called ecological character 
displacement. Darwin pointed out that divergence of 
character of a pair of species was necessary for coexistence, 
and his character displacement idea was the first theory of 
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ecological, or adaptive speciation. Darwin did not rule out 
other reasons for divergence (e.g. geographic isolation), 
but was mostly interested in explaining local biodiversity, 
which requires multiplication of species that can 
subsequently coexist in a single place and time. 
 
It is a reasonable argument that the simplest haploid 
logistic models discussed here have very little applicability 
to the topic of speciation, at least in multicellular, sexual 
eukaryotes. For instance, one can have no 'reproductive 
isolation' with asexuals. Nonetheless, the principles 
outlined here underlie much more complex models for the 
evolution of ecologically divergent entities that differ at 
many loci and are able to coexist. This can lead to a form of 
speciation where divergent populations are able to overlap 
in space and time (Rosenzweig, 1978).  
 
As with classical Lotka-Volterra competition (equation 7) 
or Lotka-Volterra haplotype frequency evolution among 
asexual haploids in a single panmictic population 
(equation 10), coexistence of two forms is stable only if 
haplotypes compete less strongly with each other than 

with their own type, so that r1/α12 > r2/α22 and r2/α21 > 

r1/α11 (see Fig. 2). This is equivalent to specifying that 
some frequency-dependent selection (Appendix 2, see 
Table 1) must exist for a new form to arise. Pure density-
dependent selection or classical MacArthurian r and K 
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selection (Appendix 2, see Table 1) cannot allow stable 
coexistence by a pair of species or haplotypes (except via 
heterozygote advantage in diploids). How near each form 
can be in terms of parameters can be investigated by 
means of models of "robust coexistence" (Meszéna et al., 
2006). As well as applying to existing species, or haploid 
asexuals, these models apply in broad outline also to 
diploid sexual populations in the process of speciation, as 
in Dieckmann & Doebeli's (1999) and related "adaptive 
dynamics", or "evolutionary branching" models of 
speciation (Weissing et al., 2011). These models assume 
that invasion of unoccupied niches allows greater 
opportunities for population growth, as in Darwin's 
principle of divergence, and require frequency-dependent 
and density-dependent selection (Table 1) for 
diversification to occur.  
 
The adaptive landscape on which populations move as 
they change in genetic constitution will be variable. It can 
be shown that a single population evolves to a zone of 
minimal fitness, given that it exploits the optimal resources, 
and reduces these at equilibrium so that the Malthusian 
fitness, R = 0 (Metz, 2011). If evolutionary branching 
occurs, it will be due to peaks of fitness (unoccupied 
ecological niches) either side of this single population 
equilibrium, which create disruptive selection and each 
attract a part of the population (Metz, 2011; Weissing et al., 
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2011). However, evolutionary branching models of 
speciation often incorporate few details of reproductive 
isolation and instead focus on ecological divergence as a 
means to achieve branching and coexistence of different 
forms. Thus they have been considered more applicable to 
the maintenance of polymorphism in asexual haploids 
than as models of speciation per se. 
 
In contrast, classical population genetic models of 
ecological speciation rarely incorporate density regulation 
explicitly (Turelli et al., 2001; Kirkpatrick & Ravigné, 2002; 
Gavrilets, 2004).  Instead, they focus on evolution of 
reproductive barriers between emerging species, and 
implicitly assume that only gene or genotype frequencies, 
rather than population density, need to be modeled.  
However, it has been known for a long time that even a 
crude implementation having constant disruptive selection 
in density-regulated populations (e.g. where a fixed total 
number emerge after a selection event in a particular 
ecological patch) can promote coexistence and 
polymorphisms of divergent ecologically adapted forms, 
or forms which choose particular ecological patches. The 
reason for this, in spite of constant selection within each 
patch, is that each form has a greater advantage when rare 
if it can occupy an unexploited niche; i.e. there is 
frequency-dependent selection overall (Levene, 1953; 
Rausher, 1984; Maynard Smith, 1998), pp. 70-74).  
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Similarly, one version of the resource distribution used in 
models of evolutionary branching has a fixed distribution 
of carrying capacity, K, along an ecological axis 
(Dieckmann & Doebeli, 1999). This may seem to imply that 
density-dependent selection is involved. However, given 
that the intrinsic rate of increase is directly proportional to 

the equilibrium density, K = r/α  at any point along the 
ecological axis, one might consider these carrying 
capacities to be due to differences in r, i.e. due to density-
independent selection within any patch. This approach of 
considering local density-dependent regulation is also 
adopted in spatial models of evolution of range size 
(Kirkpatrick & Barton, 1997; Polechová et al., 2009). 
However, as in Levene's model, mixing of the offspring 
from multiple different ecological patches or localities 
renders the selection frequency-dependent overall, and 
allows branching to occur (Dieckmann & Doebeli, 1999; 
Weissing et al., 2011). 
 
Invasion of a new ecological patch and coexistence of 
divergently adapted phenotypes is clearly greatly 
favoured when one recognizes how strong disruptive 
selection in an invading form might be under density-
dependent regulation, such as Lotka-Volterra competition.  
For example, the intrinsic Wrightian fitness differential of 
many species, proportional to eR1/eR2, may be very high, so 
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that if a mutant (type 1) with adaptations to a hitherto 
unexploited ecological niche arose and invaded an empty 
ecological patch, it could easily have a >>10x advantage in 
per capita fitness. For example, with n1 ≈ 0: 
 

1
1 1 11 1 1

1

1 dn
R r n r

n dt
α= = − ≈     

 
compared with fitnesses of the parent population, where  
 

2
2 2 22 2

2

1
0

dn
R r n

n dt
α= = − ≈ , since 2 2 22

ˆ /n r α≈  at density 

equilibrium. 
 
While this potentially huge fitness differential does not 
guarantee invasion, the counter-effects of population 
mixing may need to be extreme to prevent evolution of a 
new form. Clearly the bias in fitness between the two 
forms is greatly amplified when density-dependence is 
considered. In addition, in Dieckmann and Doebeli's (1999) 
model, the resource spectrum has fixed K. However, given 
the results in the current paper, each form i in essence 
creates its own local carrying capacity distribution, Ki = 
ri/aii, as a adaptive alleles are recruited. Thus recruitment of 
alleles permitting higher ri will be even more strongly 
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favoured than would appear to be the case even under the 
model of Dieckmann and Doebeli. 
 
Invasion possibilities will be enhanced still further if any 
reduction of mixing among patches occurs as an indirect 
result of this local adaptation (i.e. if the adaptation acts as a 
'magic trait'), for example if patches are coarse-scaled 
relative to dispersal (Mallet, 2008). It is possible to imagine 
this process continuing further, recruiting more and more 
genes, until gene flow is reduced considerably, and the 
daughters form distinct clusters of genotypes, as in 
ecological races or incipient species (Drès & Mallet, 2002).  
Habitat choice (Rausher, 1984), and various forms of 
sexual selection or reinforcement (Kirkpatrick & Ravigné, 
2002; Weissing et al., 2011; Lenormand, 2012) may 
strengthen the differences and reduce mixing still further. 
In all these cases, it becomes clearer how ecological 
adaptation acts as an important early driver of speciation 
once a fuller understanding of the importance of density 
regulation in natural selection is reached.  
 
Ecologists have made many advances in understanding 
ecological coexistence by basing their ideas on fixed 
species that cannot evolve, while incorporating simplified 
but useful models of density regulation such as Lotka-
Volterra models. They have been interested in biodiversity, 
especially in the maintenance of local diversity (although 
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these ideas are today extended geographically into global 
ideas of biodiversity and macroecology). However, 
ecological models rarely address the question of how new 
species form.  In contrast, evolutionary biologists 
investigating speciation have tended to model natural 
selection while considering only gene frequencies within 
populations. Population genetics has often ignored 
density-dependence, and ecological theories of coexistence.  
Ecological traits are often assumed to be based on constant 
selection differences (density- and frequency-independent 
selection).  In models of speciation, the major focus of 
attention has been to understand reproductive isolation, or 
a complete splitting of two populations, rather than the 
evolution of ecological specialization that may lead to 
coexistence, with reduced mixing as a by-product. Today, 
there are signs of a change. There is a return to more 
Darwinian ideas, and a growing number of ecologists and 
evolutionary biologists view natural selection, ecological 
competition, and demography as a more unitary process 
(Rosenzweig, 1978; Metz et al., 1992; Dieckmann & Doebeli, 
1999; Schluter, 2000; Vellend, 2010; Metz, 2011; Schoener, 
2011; Nosil, 2012). This is clearly the most fruitful 
approach for understanding adaptive speciation.  
 

CONCLUSIONS 
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This article enquires to what extent misinterpretations and 
controversies might have been avoided if Verhulst's 
original polynomial formulation of the logistic equation, 

dN/dt = rN – αN2 (where α represents a "crowding 
coefficient"), had instead been more widely appreciated. In 
this formulation, the equilibrium population density is K = 

r/α becomes easily understood as a dynamic balance 
between density-independent and density-dependent 
parameters, rather than as a separate fixed parameter in its 
own right.  
 

The polynomial r-α logistic is mathematically equivalent to 
the r-K logistic normally found in today's textbooks, but its 
simpler interpretation can clarify many issues. Some of the 
apparently paradoxical consequences of r-K formulations 

are readily and intuitively avoided. Furthermore, the r-α 
model can be derived readily from approximations to 
fundamental processes of energy and chemical flow. It also 
simplifies the relationship between interspecific 
competition and natural selection, and resolves one 
important difficulty with the MacArthur/Wilson 
formulation of r and K selection. A correct understanding 
of the compound nature of 'carrying capacity' as a 
population equilibrium can thus lead to a better 
understanding of the unity of ecology and evolution with 
speciation theory. 
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APPENDIX 1. RELATIONSHIP OF GENE FREQUENCY 

EVOLUTION TO  
POPULATION GROWTH 

by James Mallet and Wei-Chung Liu1 
 

1.  Institute of Statistical Science, Academia Sinica,  
Taipei 11529, Taiwan, R.O.C. 

 
Evolution in a haploid population is defined as a change in 
the fractions of haplotypes, p, q, in an haploid population 
of size N (where N = n1 + n2,  p = n1/N and q = 1 – p = 
n2/N). How do changes in the numbers of each haplotype 
n1, n2, affect the the fractions of haplotypes in the 
population over time?  Here, we use methods developed 
earlier (Volterra, 1927; Crow & Kimura, 1970; Leigh, 1971; 
Smouse, 1976), and apply them to the most general case of 
Lotka-Volterra competition. First, note that 

( )1 2 1 2
log / log loge e e
d n n d n d n

dt dt dt
= − . Given that  

xdx

xd e 1log
= , and 

[ ] [ ]( ) ( )d f x d f x dx

dt dx dt
= , this can be 

rewritten as: 
 

( )1 2 1 2

1 2

log / 1 1ed n n dn dn

dt n dt n dt
= −      (A1.1) 
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We are interested in evolution of the predominance of n1 in 
a population.  
 

( )log / log log (1 )e e e
d p q d p d p

dt dt dt

−
= −  

 
1 1 1

(1 ) (1 )

dp dp dp

p dt p dt p p dt
= + =

− −     (A1.2) 

 

Since 
( ) ( )1 2log / log /e ed p q d n n

dt dt
= , we can put A1.1 and 

A1.2 together: 
 

1 2

1 2

1 1 1

(1 )

dn dndp

p p dt n dt n dt
= −

−      (A1.3) 

 
Substituting in the general formulation for allelic density 
growth (equations 8a,b) into A1.3 gives: 
 

( ) ( ) ( ) ( )1 1 2 1 1 2 2 1 2 2 1 2

1
, , , ,

(1 )

dp
B n n D n n B n n D n n

p p dt
   = − − −   −

 (A1.4) 

 
For logistic demography, we assume Lotka-Volterra 
competition among haplotypes (equation 7) in equation 
A1.4: 
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1 11 1 12 2 2 22 2 21 1

1

(1 )
α α α α= − − − + +

−
dp

r n n r n n
p p dt

  (A1.5) 

 
Substituting p = n1/N in A1.5:  
 

( ) ( )1 2 11 21 22 12

1
(1 )

(1 )

dp
r r p p N

p p dt
α α α α = − − − − − − −   (A1.6) 

 
In contrast, using the r-K formulation we have: 
 

( ) ( )1 1 12 2 1 2 2 21 1 2

1
1 1

(1 )

dp
r n n K r n n K

p p dt
γ γ   = − − − − −   −

    (A1.7) 

 
As with the logistic itself (see "iii. Partitioning…" in main 
text), equation A1.7 cannot readily be factored into 
separate density-dependent and density-independent 
parts, unlike equation A1.6. 
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APPENDIX 2. SPECIAL CASES OF EQUATION 10 
Logistic regulation special case 1:  

'density-independent selection,' pure 'r selection,' 
'constant selection' 

 
If heritable differences among haploids affect only r1 and r2 

, all other parameters being equal (i.e. α11 = α22 = α12 = α21 

= α), equation 10 reduces to: 
 

1 2{ } (1 )
dp

r r p p
dt

= − −        (A2.1) 

 
... in other words, identical to equation 9, but with constant 
R1 and R2. The haplotype frequency dynamics are identical 
to those of selection in a population with exponential 
growth, even though the population is now regulated to 

the average equilibrium density [r1p + r2(1 – p)]/α 
(Smouse, 1976). The haplotype with the higher r also has 
the higher equilibrium density, and will predominate in 
evolution. Evolution proceeds at a rate independent of 
density, however far either haplotype is from its 
equilibrium density. This is demonstrated by linear change 
in logit-transformed haplotype frequency (Fig. 4 B,D). The 
same density-independent result is also true somewhat 
more generally if the per capita density-dependent effects of 
each species on the other are the same as the per capita 
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effect of its own species on itself (i.e. if α11 =α21 and  α22 = 

α12). 
 
This result (Volterra, 1927; Leslie, 1957; Smouse, 1976) 
seems to have gone largely unrecognized (MacArthur, 
1962; Roughgarden, 1971; Desharnais & Costantino, 1983; 
Asmussen, 1983a), because r is convoluted with K in the r-

K formulation. As we have seen, with K1 = K2 = K and γ12 = 

γ21 = 1 in equation 6, values of r have no effect on 
outcomes: coexistence of haplotypes is neutrally stable. 
The situation is given by Equation A2.2b (below) with K1 = 
K2 so that dp/dt = (r1 – r2)(1 – N/K)p (1 – p). At population 
equilibrium, N = K and no gene frequency evolution is 
possible, although when N < K, the population will evolve 
to maximize r. Curiously, therefore, only density-
dependent selection is possible under conventional r-K 
regulation, apparently making the most basic, Fisherian 
population genetic model impossible.  
 
Crow and Kimura found one apparent exception, but this 
depends on their ruse of forcing density regulation of each 
haplotype to depend in part on the value of r of the other 
haplotype as well as on overall density N (case 2 in Crow 
and Kimura, 1970: 27); this hardly seems justified.  Even 

when recognized, the r-α logistic was characterized as 
"weaker population control," a situation that "is probably 
quite unusual in nature" (case 3 in Crow & Kimura, 1970: 
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28). A suitable name for the current case is 'pure r 
selection,' which has a different meaning to MacArthur & 

Wilson's term when ni >> 0 (see below). Because α is 
constant, equilibrium density K can vary, and is directly 
proportion to r .  
 
As in exponential growth, this pure r selection is 
independent of density or gene frequency. However, 
selection does strongly affect density, and is therefore also 
a form of 'hard selection' (sensu Christiansen 1975; the 
alternative, 'soft selection,' would not affect population 
density, Table 1). Population geneticists often assume soft 
selection implicitly, and ignore population density. This is 
clearly not a valid assumption even in this, the most basic 
form of Fisherian natural selection in both density-
regulated and unregulated populations. 
  
Logistic regulation special case 2: 'pure density-dependent 

selection' 
 
If selection is primarily controlled by heritable differences 

in crowding effects α (or equivalently in equation A1.7, 

variable K), but all other effects are again identical, (i.e. α11 

= α12 = α1  and α22 = α21 = α2 and and r2 = r1 = r), equation 
10 reduces to: 
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{ }2 1( ) (1 )
dp

N p p
dt

α α= − −       (A2.2a) 

 
This is similar, again, to the classical constant selection 
model of equation 11, but is now directly dependent on 
population density N. Any selection to minimize crowding 
is most effective in high density populations. The 
equivalent result from the traditional r-K logistic (equation 
A1.7) appears less elegant (case 4 in Crow and Kimura, 
1970: 29): 
 

1 2

1 2

(1 )
K Kdp

r N p p
dt K K

  − 
= −  

   
     (A2.2b) 

 
This type of selection might be termed 'pure density-
dependent selection,' because there is no density-
independent selection (involving r), or frequency-
dependent selection (involving differences in between- 
and within-species population regulation. Like r selection 
density-dependent selection is independent of gene 
frequency and hard – it always increase equilibrium 
population size.  
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Logistic regulation special case 3: 'r and K selection' 
sensu MacArthur & Wilson 

 
A logistic interpretation of the intent of MacArthur's 
pioneering paper (MacArthur, 1962) and of the 'r and K 
selection' verbal models of MacArthur & Wilson (1967) 
would allow both r and K to vary among haplotypes, 
while crowding is still effected by all haplotypes 

identically  (i.e. α11 = α12 = α1  and α22 = α21 = α2). This 
combines special cases 1 and 2 and gives the expected 
combination of equations A2.1 & A2.2:  
 

( ){ }1 2 2 1( ) (1 )
dp

r r N p p
dt

α α= − + − −     (A2.3a) 

 
When expressed according to the r-K formulation, the 
same equation appears clumsier: 
 

{ }1 2 1 1 2 2( ) ( / / ) (1 )
dp

r r r K r K N p p
dt

= − − − −    (A2.3b) 

 
As with equation A2.2, selection is density-dependent, 
frequency-independent, and hard. Equilibrium densities K 
always increase (as in MacArthur 1962), because selection 

favours both increased r and reduced α. Interior equilibria 
are impossible under either density-independent or 
density-dependent selection or their combinations in these 
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haploid models, because Lotka-Volterra conditions for 
equilibria cannot be met (Fig. 2). This is the classical model 
of 'density-dependent selection' (e.g. Hartl & Clark, 2007, 
p. 231). A discrete-generation version of equation A2.3b 
was the one first used to analyse dynamics of diploid 
populations (Roughgarden, 1971; Charlesworth, 1971; 
Anderson, 1971). Similar results for density-independent 
selection, pure density-dependent selection and their 
combination (Macarthurian r and K selection) are also 

obtained in a model related to the r-α model of equation 
10, differing only in that per capita density-dependence is 
logarithmic rather than linear (Kimura, 1978). 
 

Logistic regulation special case 4: 'Pure' frequency-
dependent selection 

 
Suppose selection does not alter equilibrium density, i.e. K1 

= K2 = K =  r1/α11 = r2/α22 , while α12 and α21 are free to 
vary. This case does not simplify, and the mathematics are 
therefore given by the general equation 10. Although 
equilibrium densities remain the same on fixation of either 
variant, the dynamics of gene frequencies are as complex 
as in the general case. This type of selection might be 
termed 'pure frequency-dependent selection,' or 

alternatively 'α selection' (Gill, 1974; Joshi et al., 2001). An 
interesting additional simplification occurs when all 
solitary allelic growth parameters are identical, r1 = r2 = r 
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and α11 = α22 = α = r/K, so that haplotypes compete only 

via differing α12 and α21 interactions, and equilibrium 
population density K does not evolve: 
 

[ ]{ }12 21( )(1 ) ( ) (1 )
dp

p p N p p
dt

α α α α= − − − − −     (A2.4) 

 
Even when density remains the same during evolution, we 
see a two-phase evolutionary process on a logit scale 
(equation 1 A2.2, Fig. 6, discussed below). Thus selection is 
frequency-dependent. Overall density N remains 
approximately constant during replacement evolution, 
although 'blips' in population density can occur when 
selection is strong (Fig. 6). Pure frequency-dependent 
selection is both effectively density-independent and 
frequency-dependent. Furthermore, because equilibrium 
density does not change, selection can be approximately 
'soft'. Frequency-dependent selection emerges from these 

simple demographic models solely via differences in α12 

and α21 interaction among haplotypes.  
 
Interior equilibria are possible, both stable and unstable, 
and are given by the same conditions as for Lotka-Volterra 
competition (Fig. 2). A special case of interior equilibrium 

in equation 2.4 occurs if ( ) ( ) ( )12 21 12
ˆ /p α α α α α α = − − + −  . 

Evolution towards or away from interior equilibria will, 
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however, give hard selection, since overall density at 
equilibrium will be higher than K for stable equilibria, or 
lower for unstable, even when K does not differ among 
haplotypes. 
 

Logistic regulation: general case of haploid selection 
 
For the most general kinds of selection, evolution under 
equation 10 will consist of two approximately logit-linear 
phases (Smouse & Kosuda, 1977); when haplotype 1 is 

rare, n1 ≈ 0, and if the population is at approximate density 

equilibrium, n2 ≈ K2 (as in Fig. 3), then the rate of evolution 
will be: 
 

( )1 1 12 2 2 12
1

1 22

(1 ) (1 )
r K K rdp

p p r p p
dt K

γ α
α

−  
≈ − = − − 

 
   (A2.5a) 

 
Similarly, when haplotype 1 is common, the rate of 
evolution will be: 
 

( )2 2 21 1 1 21
2

2 11

(1 ) (1 )
r K K rdp

p p r p p
dt K

γ α
α

−  
≈ − − = − − − 

 
  (A2.5b) 

 
Provided that density equilibration is rapid compared with 
the rate of evolution, we expect initial evolution of a rare 
advantageous haplotype at one constant rate, followed by 
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a shift during evolution to a different constant rate mode 
when the haplotype becomes more common, when plotted 
on a logit scale as in Figs. 5,6. Even with slow replacement 
evolution (and therefore, weak selection), significant 

differences in r and α among haplotypes will mean that 
replacement evolution is frequency-dependent and is no 
longer linearized by a logit transformation (Fig. 5-6). In 
equations 10 and A2.4, stable or unstable polymorphisms 
are possible, as in generalized Lotka-Volterra competition. 
The condition for Lotka-Volterra coexistence (bottom right 
of Fig. 3) must be met for a polymorphic equilibrium to be 
stable, and that for unstable coexistence (bottom left of Fig. 
3) for an equilibrium to be unstable (see Table 1). 
 
Equation 10 also shows that natural selection will 
generally be density-dependent and frequency-dependent; 
it will also typically affect population density (either up or 
down), so selection is hard. Even weak selection can result 
in major changes in population size and variable rates of 
evolution during replacement. Results of the various cases 
are summarized in Table 1. 
 
APPENDIX 3. SELECTION IN LOTKA-VOLTERRA DIPLOID 

POPULATIONS 
 
Diploid dynamics of Lotka-Volterra competition among 
haplotypes has never been treated in the most general 
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cases. Instead, such analyses have been carried out under 
classical ideas of density-dependent selection with r-K 
formulation Lotka-Volterra-type models, usually with 
discrete-time Wrightian fitnesses (Roughgarden, 1971; 
Anderson, 1971; Asmussen, 1983b). The usual assumption 
is that individuals all genotypes are equal with respect to 
density regulation on each genotype, leading to pure 
density-dependent selection, and no polymorphic 
competitive equilibrium possible (although heterosis may 
lead to stable equilibrium).  
 
But interactions in simple Lotka-Volterra populations are 
potentially more complex, requiring a plethora of 

parameters and subscripts. For instance if  αij,kl is the 
crowding effect of genotype kl on genotype ij, then the 

usual density-dependent assumption means that αij,kl = 

αij,mn ∀ k,l,m,n. To render more general Lotka-Volterra 
dynamics, although still accounting only for pairwise 
parameters at two haplotypes or alleles, one could use up 
to 12 parameters for the demographic model alone: 
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11
11 11,11 11 11,12 12 11,22 22

11

1
α α α= − − −

dN
r N N N

N dt
   (A3.1a)  

12
12 12,11 11 12,12 12 12,22 22

12

1
α α α= − − −

dN
r N N N

N dt
   (A3.1b) 

22
22 22,11 11 22,12 12 22,22 22

22

1
α α α= − − −

dN
r N N N

N dt
  (A3.1c) 

 
Mating among genotypes within these populations 
ensures that individuals often produce offspring unlike 
their own kind, so that equations A3.1a-c are not complete 
for predicting the dynamics without mating parameters. It 
is much easier to iterate these equations than to solve them 
for haplotype frequency (see Fig. 9, for the case of random 
mating). 
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Table 1. Types of selection possible in the haploid Lotka-
Volterra model (equation 10) 

 

Model type 
Parameter-
dependence of 
S 

Density (N)* - 
… 

Frequency (p)* - 
… 

Hard vs. 
soft † 
selection 

Interior 
equilibria 

'constant 
selection',  
r selection 

r1, r2  -independent 
 
 

-independent hard - 

pure 
density-
dependent 
selection 

r1 = r2, α11=α12, 

α22=α21 

-dependent -independent hard - 

r and K 
selection§ 

r1, r2, α11=α12, 

α22=α21 

-dependent -independent hard - 

'pure' 
frequency-
dependent 
selection ¶  

r1/α11 

=r2/α22  

α12, α21 

-dependent 
(esp. if far from 
equilibrium 
density) 

-dependent ~ soft + 

general 
model 

r1, r2, α11, α22, 

α12, α21 

-dependent -dependent hard + 

 
Notes 
* Variables, N or p, of which the Fisherian selection term, S, is a function. 
† Hard selection causes an alteration in N, soft selection does not (Christiansen, 1975). Earlier 
definitions of these terms (Wallace, 1968; Saccheri & Hanski, 2006) are difficult to apply; 
Christiansen's distinction is particularly important where multiple populations interact, for 
instance in clines, because population density will influence fractional migration rates in and 
out of populations. 
§ Sensu MacArthur and Wilson (1967). 

¶ General model, except that replacement while N ≈ K1 = K2 during evolution. 
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