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Abstract

Alleles that introgress between species can influence the evolutionary and
ecological fate of species exposed to novel environments. Hybrid offspring
of different species are often unfit, and yet it has long been argued that in-
trogression can be a potent force in evolution, especially in plants. Over the
last two decades, genomic data have increasingly provided evidence that in-
trogression is a critically important source of genetic variation and that this
additional variation can be useful in adaptive evolution of both animals and
plants.Here,we review factors that influence the probability that foreign ge-
netic variants provide long-term benefits (so-called adaptive introgression)
and discuss their potential benefits. We find that introgression plays an im-
portant role in adaptive evolution, particularly when a species is far from
its fitness optimum, such as when they expand their range or are subject to
changing environments.
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INTRODUCTION

Darwin’s (33) intuition that species evolved, rather than having been created by God, required that
they emerged somewhat gradually by diverging from other species.However, evenThomasHenry
Huxley, known as Darwin’s bulldog, objected that Darwin had not solved the problem of the ori-
gin of hybrid incompatibility between species (65), which had been viewed as a standard definition
of species (24). For example, mules are typically sterile, and so the horse and donkey parents were
considered clearly different species. In “Hybridism,” Chapter 8 of On the Origin of Species, Darwin
(33) instead argued that while hybrid sterility and inviability are correlated with what we mean by
species in taxonomy, the correlation is loose: Many clearly demarcated species lack hybrid incom-
patibility, and incompatibilities often also occur within taxa we consider to be species.Darwin sug-
gested that incompatibilities evolved as incidental by-products of divergence and were not, there-
fore, useful as a definition or essence of speciation.Theweakness of the correlation between hybrid
incompatibility and what we mean by species, especially in intermediate cases (“doubtful species”),
strengthened Darwin’s gradualist view of speciation. Soon after Darwin’s death, George Romanes
(135), claiming discipleship of Darwin, nevertheless attempted to argue that hybrid incompatibili-
ties were advantageous and evolved via a process he called physiological selection. In the twentieth
century, physiological and mating incompatibilities were seen as isolating mechanisms between
species, and this led to a renewal of opinion among today’s evolutionary biologists that species are
best defined by reproductive isolation, an idea known as the biological species concept (29, 36,
100).

Nonetheless, many species are known to hybridize occasionally in captivity and in the wild.
Zoologists belittled this trickle of hybridization, which was interpreted to have minimal effects on
natural populations (100). In contrast, botanists emphasized the importance of hybridization, in-
trogression (the acquisition of genetic variation from another species), and recombinational speci-
ation (today known as homoploid hybrid speciation) (5, 6). By the mid-twentieth century, cytolog-
ical studies had also shown that a substantial fraction of flowering plant speciation events involved
polyploid hybrids of divergent parent species (56). More recently, data on the importance of ani-
mal hybridization were beginning to accumulate (29, 55).The introduction of techniques enabling
substantial numbers of molecular genetic markers to be sampled across the genome, and, more
recently, genome sequencing led to greatly improved power to test different ideas about plant
and animal speciation (1, 10, 13, 89, 131, 149). Today, an avalanche of genomic results demon-
strate both frequent gene flow among species, some of which is adaptive, and that hybrid speci-
ation occurs in animals as well as plants (39, 40, 43, 48–49, 79, 83, 94, 104, 117, 126, 134, 141,
154).

A great deal of attention has been paid to the immediate, negative consequences of hybridiza-
tion, including hybrid sterility and hybrid inviability of early generation hybrids (15, 29, 157). Yet
despite such impediments, it is becoming clear that alleles with positive impacts on fitness have
been exchanged between populations, and that introgressed alleles can persist for millions of years
(11, 14, 119).While the fact of introgression is today broadly accepted, we still lack an understand-
ing of its magnitude and long-term effects. What fraction of the genome is due to introgression
across the tree (or network) of life? How likely are introgressed fragments of the genome to aid
adaptation in spite of linked deleterious alleles? Gene flow among species was traditionally viewed
as a hindrance to speciation, but how likely is it that adaptive introgression leads to hybrid spe-
ciation or to adaptive radiation? Can we identify scenarios that are more conducive to adaptive
introgression?
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HYBRIDIZATION, INTROGRESSION, ADMIXTURE,
AND HYBRID SPECIATION

Hybridization is the production of offspring between divergent populations, and in the present
context, we mean between recognized species. Hybridization between divergently adapted popu-
lations is generally rather deleterious: First-generation hybrids and early generation backcrosses
are often inviable or sterile, and so there is no guarantee that hybridization will lead to gene flow
in the longer term. For cases where genes are successfully transferred among species, the term
introgressive hybridization, or merely introgression, came into use following Edgar Anderson’s
(5) pioneering work.While hybridization is largely deleterious, the phrase adaptive introgression
describes the acquisition of advantageous variation via introgression (62, 72).This term should not
be taken to mean that the initial hybridization process itself was adaptive and selected for or that
most hybrids are fitter.Heterosis of first-generation hybrids between species has been used to sug-
gest that hybridization itself is often adaptive (12).However, heterosis depends on the likely mode
of adaptation and dominance, and it is probable that any initial gain in fitness is greatly outweighed
by low average fitness of later generation hybrids (15). It is usually only after a long process of se-
lection among hybrids that any of the remaining introgressed variation becomes adaptive. Even
after extensive backcrossing, introgressed variation may still be selected against and be gradually
lost. The term admixture has been used to describe the introgressed fraction that remains in the
genomes of modern humans thousands of generations since hybridization with archaic hominins
such as Neanderthals (57, 62).

Hybridization and introgression can also lead to the origin of a novel species lineage, or hybrid
speciation. This has been well documented for allopolyploid hybrid speciation in plants (56), but
a second type of hybrid speciation that does not involve whole-genome duplication, recombina-
tional speciation, or, in today’s terminology, homoploid hybrid speciation, is also known in plants,
though suspected to be rare (129). Controversy exists about the meaning of hybrid speciation be-
cause the term has been applied rather loosely to cases where there is evidence for speciation as
well as introgression in the same lineages. Part of the problem of defining hybrid speciation is that
species and speciation are themselves hard to define.

A strict definition of hybrid speciation might require a novel hybrid species to coexist and over-
lap spatially with both parents, which would prove that all three are good species. In practice we
rarely see such patterns in nature. For example, several well-known hybrid species of Helianthus
sunflowers are clearly hybrids (see Figure 1) but normally occupy extreme environments where
parental species are absent: Helianthus anomalus is found in sand dune habitats; Helianthus deserti-
cola is a xerophytic species found in sand/clay deserts; and Helianthus paradoxus is a specialist on
high salinity soils. Both parents (Helianthus annuus,Helianthus petiolaris) are found mainly in more
mesic habitats (130). This may be a general phenomenon if hybridization allows species to expand
their niches through recombination of advantageous traits (90, 95, 129). Similarly, the homoploid
hybrid butterfly species Heliconius heurippa overlaps with only one of its parent species, Helico-
nius melpomene (98). Therefore, this definition would exclude many cases that have hitherto been
considered hybrid speciation.

An alternative strict definition of hybrid speciation is that reproductive isolation is required
and has been produced as a direct result of hybridization that led to the emergence of the new
species. Proving hybrid speciation requires “demonstrating that isolating mechanisms were de-
rived from hybridization” (141, p. 1556). The homoploid Helianthus hybrid species, as well as
allopolyploid hybrid species, clearly qualify: They tend to be rather strongly reproductively iso-
lated (Figure 1), due in part to stabilized recombinant parental chromosomal arrangements that
make hybridization difficult with either parent (130). The wing coloration of H. heurippa derives
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Figure 1

Crossability of Helianthus sunflower species. Percentages indicate pollen viability of first-generation hybrids.
The three homoploid hybrid species Helianthus anomalus,Helianthus deserticola, and Helianthus paradoxus, as
well as the experimentally produced synthetic lineages, are all homoploid hybrid lineages produced by
crosses between Helianthus annuus and Helianthus petiolaris. Line thickness is proportional to average parental
crossability. Figure reproduced with permission from Reference 130.

from hybridization between its parents,H. melpomene melpomene and the Heliconius timareta/cydno
superspecies (9, 91). The red and yellow hybrid coloration leads to premating isolation between
H. heurippa andH.melpomene and weaker assortative mate choice betweenH. heurippa andH. cydno
(98). The case for coloration-led premating isolation, however, is now weakened by the discovery
of a data analysis error in the original paper (99). The case of hybrid origin of color pattern is clear,
but its involvement in reproductive isolation between H. timareta/cydno and H. heurippa is now in
doubt. Nonetheless, H. cydno and H. timareta remain partially isolated from H. heurippa, in part
due to color pattern but also perhaps due to pheromonal communication, in experimental tests
(61, 98, 99). In addition, based on genome-wide sequence data, little genetic information, apart
from coloration-determining genes, was inherited from H. melpomene, and it could therefore be
argued that the lack of sympatry of H. heurippa and H. timareta/H. cydno is more simply explained
if H. heurippa is a subspecies of a more widespread species, H. timareta, that has undergone in-
trogression from H. melpomene. Like H. heurippa, most of the more southern forms of the same
H. timareta lineage have also clearly acquired adaptive coloration, used inMüllerian mimicry, from
various other local forms of H. melpomene (34, 51, 107).

In contrast, the butterfly Heliconius elevatus appears to be a hybrid species that coexists widely
with both parents across most of the Amazon basin (34, 137). H. elevatus acquired color-pattern-
determining loci via introgression with H. melpomene (34, 162), although its ancestor and the
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majority of its genome are much closer to Heliconius pardalinus (34, 137).H. elevatus today is sym-
patric with and reproductively isolated from both parental species and so likely obeys both of
the above strict definitions of hybrid speciation. Yet, based on genomic data,H. elevatus could be
viewed as little more than an introgressed sister species of H. pardalinus.

However, this second strict definition is controversial: Botanists reacted against the Schumer
et al. criteria (141), arguing, “We think that if there is evidence that a hybridization event has
given rise to an established, persistent, morphologically and ecologically distinct hybrid lineage,
the recognition of this fact should not be compromised by whether or not we can demonstrate
that hybridization was directly the cause of [reproductive isolation]” (112, p. 514). Especially if
the hybridization that led to speciation was ancient, it is often very difficult to determine whether
“isolating mechanisms were derived from hybridization” (141, p. 1556). A different, more tree-
based definition, under the multispecies-coalescent-with-introgression (MSci) model, also seems
reasonable: Two lineages fuse to form a third distinct lineage in a single speciation event (47, 77)
(see also the section below titled Assessing Prevalence of Introgression). Regardless of whether
adaptive introgression events are classified as hybrid speciation, they can play an important role
in the adaptive divergence of many species. For the purposes of the rest of this article, we con-
centrate more on documenting introgression, the factors that make it more or less likely, and
its adaptive consequences than on discussing the semantic issue of whether introgression led to
hybrid speciation.

ASSESSING PREVALENCE OF INTROGRESSION

Methods for detecting and quantifying introgression with genomic data have been recently re-
viewed elsewhere (41, 64), and we summarize them only briefly. Because diploid genomes recom-
bine each generation during meiosis, individuals contain blends of loci with unique genealogies
and evolutionary histories. If introgression occurred, each part of the genome may have different
ancestors, and genealogical or gene tree information can be used to make evolutionary inferences
(47, 58, 87, 94, 147). A number of tests have been devised to estimate the prevalence of intro-
gressed loci or genomic regions with a history of interspecific gene flow. Some methods, such as
the widely used D statistics and their extensions, use DNA site patterns in subsets of species to
test the null hypothesis that alleles are shared between nonsister species due to incomplete lin-
eage sorting; a bias toward nonsister sharing implies introgression (23, 118, 121). Others use gene
tree branch length information and coalescent theory in such tests (39) or address the more com-
plex problem of generating full phylogenetic networks that include hybridization edges (22, 41,
148). Underlying models of gene flow vary between network estimation methods. For example,
in models based in coalescent theory, isolation-with-migration (IM) models assume migration for
a sustained period of time (63) while MSci models assume pulses of gene flow at particular times
(47, 165) (Figure 2). These strategies estimate models with different sets of parameters, and it can
often be difficult, as well as computationally challenging, to choose among options. The choices
can be so difficult, in fact, that some introgression researchers select a wide range of models and
then compare likelihoods of the data from those models in a variety of ways (84, 88).

Methods that estimate the probability that loci across the genome have a history of introgres-
sion are widely accessible and widely used. Nonetheless, they are based mostly on an assumption
of neutrality: that the vast majority of informative sites are neutral. Detecting adaptive intro-
gression in the genome requires an additional test for positive selection, which typically requires
population-level sampling. Powerful methods to identify selection on a genome-wide scale have
been developed based on expected patterns of heterozygosity and expected changes in the coales-
cent process around selected sites (21, 35, 73, 144). These techniques have recently been adapted
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Figure 2

Models of introgression. Genealogical models used to estimate introgression differ in their assumptions. We here show four models
that differ in their hypotheses and, therefore, in model parameters. (a) Introgression, in which an ancestor of species A, which diverged
from A at time τS, contributed genetic material to the ancestor of species C at time τH. (b) Ancestors of species A and B both contribute
genetic material to an ancestor of species C at the same time, τH. (c) Bidirectional, instantaneous gene flow. Models in panels a and c
represent classical models of introgression, while the model in panel b in a phylogenetic sense represents hybrid speciation. In each
model, populations have a population size designated by θ and probability of genetic contribution designated by φ. (d) Species A and B
contribute genetic material to each other at a constant rate, starting at their divergence. Models in panels a, b, and c are alternatives
within the multispecies-coalescent-with-introgression (MSci) framework, while the model in panel d is within the isolation-with-
migration (IM) framework (47). Figure adapted with permission from References 32 (panel d) and 47 (panels a–c).

to models of evolution that include introgression (108, 144). One promising avenue is analysis of
genomic clines (52). This framework identifies introgressed alleles that are present at unexpected
frequencies, given the average hybrid makeup of a population. Adaptive introgression is inferred
if, for example, introgressed alleles are at high frequencies, even though the genome as a whole is
not broadly admixed (52).

As genome sequencing technology has improved, methods have evolved, using genome-wide
single-nucleotide polymorphism (SNP) data and more complex models to identify subtle adap-
tive effects in populations. New analytical techniques are also currently being developed to take
advantage of phased haplotype information in diploids, revealed by long-read or linked-read se-
quence data (105). Indirect measures of haplotype frequency based on allele frequency (42, 138,
161), as well as inferred haplotypes based on known pedigrees and parental genotypes [i.e., quan-
titative trait locus (QTL) mapping (reviewed in 146)], are widely used and have proved effective.
However, direct sequencing of haplotypes will reduce the need for error-prone inference and yield
more confident assessments of the strength of selection, timing of sweeps, and geographic popu-
lation structure of selected regions of the genome (105).

NONADAPTIVE AND ADAPTIVE INTROGRESSION

The various methods reviewed above (41, 64) have shown that hybridization contributes substan-
tial genomic variation to many groups of species across the tree of life (94, 155). The fraction of
the genome that introgressed has an enormous range—from around 2% in the snowshoe hare
to over 70% in Anopheles mosquitoes (48, 68). In addition to learning that introgressed ancestry
may be abundant within a particular genome, we have also found introgression to be common
among species. The best evidence for this comes from broad phylogenetic studies where species
were not chosen on the basis of known hybridization. For example, a recent study of 155 species
ofDrosophila and related genera divided the clade into nine broad monophyletic groups and iden-
tified evidence of introgression in eight of them (153). Similarly, in an analysis of 40 Heliconius
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genomes, at least 12 instances of gene flow were inferred, involving all major clades (75). Rather
than forming a preponderance of cases, phylogenies with no evidence of gene flow are beginning
to seem like the exception rather than the rule.Clades as diverse as fossil and living elephants (117),
darters (86), tomatoes (120), and yeast (38) all show strong evidence of introgression throughout
their history.

Even in groups where introgression is common, its prevalence can vary. Different pairs of
species exchange different fractions of their genome. A simple explanation for variation in intro-
gressed ancestry is variation in divergence between hybridizing species. On average, as species
diverge, we find that genetic incompatibility increases and the incidence of hybridization (and
introgression) declines, although the relationship is often noisy (27, 28, 54, 89, 93, 97, 109, 116)
(Figure 3a). The correlation between divergence and incompatibility is in part due to the evo-
lution of epistatic interactions, known as Dobzhansky-Muller incompatibilities, between alleles
from different species: Substitutions in one lineage can be neutral or beneficial but will sometimes
interact negatively with derived alleles in another lineage (36, 110). As the time since the common
ancestor and the numbers of divergent substitutions increase, the number of two-locus negative
epistatic interactions between a pair of isolated populations is expected to increase quadratically,
leading to a snowballing effect with time (116); multilocus incompatibilities (123) can accelerate
even faster.Whether declines in hybrid fitness do conform to a snowball effect in nature is still un-
clear; in any case, the relationship between percent divergence and hybrid compatibility is highly
variable, even among species with similar genetic divergence (28, 54).

There is little doubt that the fraction of the genome that introgressed as a function of time
since divergence does not fully explain observed levels of admixture or its heterogeneity across
the genome: Natural selection on introgressed alleles almost certainly plays a part (Figure 3b,c).
Adaptive introgression is often envisaged to involve single traits or loci, but there are a number
of additional ways whereby hybridization can lead to improved fitness. Adaptive introgression
likely depends on degree of genetic similarity, gene flow among populations within species, and
the fitness of each population in its own and novel environments. For example, in pairs of species
that are closely related or hybridize often, introgression can increase effective population size (Ne)
across much of the genome (122). Introgression may sometimes prove beneficial for species with
small populations, such as endangered species, because natural selection in a diploid population
is ineffective if the coefficient of selection on an allele, s, is less than ∼1/(4Ne) (60, 166). Weakly
deleterious alleles will more readily persist and be fixed stochastically in small populations.A larger
effective population size leads to (a) greater efficiency of natural selection that will improve the
use of weakly advantageous alleles and more successfully purge weakly deleterious alleles; (b) a
supply of novel genetic variation on which selection can act; and (c) increased heterozygosity that
can rescue populations from inbreeding depression (3, 4).

Alleles that cross the species boundary may provide adaptive benefits other than their selective
effect in the source population (30, 50, 145).As one example, genomic regions that fail to introgress
between the butterflies H. pardalinus and H. elevatus in the Amazon have around half of the levels
of polymorphism compared to levels in regions in which gene flow is pervasive, demonstrating
that increased variation is a widespread result of hybridization in these species (76). In Trinida-
dian guppies, an influx of migrants from a large downstream population into a smaller upstream
population helped to increase fitness and genetic variation (46).These conspecific populations had
adapted to different ecological conditions, but gene flow did not swamp locally adaptive alleles in
the recipient population, as has been suggested in other cases (156). Evolutionary biologists tend
to view an absence of gene flow as a positive outcome of speciation. Yet, because of the effect on
the reduction of effective population size and the resulting reduced efficiency of natural selection,
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completion of speciation may prove unfavorable (16). Individuals of divergently adapted species
may be mostly selected to minimize hybridization to avoid unfit offspring, but their mistakes may
aid the ultimate survival of the populations to which they belong. However, the relationship be-
tween small population sizes and increased genetic load is complex, and adding foreign genetic
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Figure 3 (Figure appears on preceding page)

Factors determining the extent of introgression. (a) Genetic divergence (measured by fixation index, FST). Pairs of populations, such as
these cichlids, are more likely to hybridize if they are closely related (164). Panel a adapted from Reference 164; CC BY 4.0.
(b) Selection against deleterious alleles. Across many pairs of hybridizing species, including Heliconius timareta and Heliconius melpomene
(mel-E) butterflies shown here, the proportion of introgressed variants is reduced on the sex chromosome. This is hypothesized to be
due partly to deleterious recessive alleles being expressed in the heterogametic sex and partly to the fact that genes that contribute to
hybrid incompatibility appear to be more common on sex chromosomes (96). Only 5 of the 20 autosomes are shown due to space
constraints, but the pattern is consistent across all 20 autosomes. Panel b adapted with permission from Reference 96; CC BY 4.0.
(c) Selection for beneficial alleles. An increase in the use of insecticide-treated bed nets (ITNs) led first to an increase in frequency of
the kdr pyrethroid resistance allele L1014F in Anopheles gambiae, and a later increase in frequency in Anopheles coluzzii after
introgression from the former species (113). Panel c adapted with permission from Reference 113. (d) Demography. Low effective
population sizes (Ne) of species like Neanderthals may lead to increased frequencies of segregating deleterious alleles. When these
alleles introgress into larger population species like modern humans, they may contribute to fitness decline (59). Panel d adapted with
permission from Reference 59. (e) Recombination. In three-spined sticklebacks, as in many other species, regions of the genome with
low rates of recombination (gray line) prevent deleterious introgressed alleles from becoming decoupled from neighboring loci. This
may prevent gene flow, resulting in higher levels of divergence (FST) in regions of low recombination (blue and black lines) (133). Panel e
adapted with permission from Reference 133.

variation from a population with large effective size to a small population can sometimes result in
a crash in population size (78) (see the section below titled Demography).

In more divergent species, or those with fewer opportunities to interbreed, genes may not
travel very freely among hybridizing populations. However, even here, one must not look only
to large-effect loci for adaptive introgression. Analysis of genomic variation has revealed cases of
introgressed alleles that segregate at frequencies higher than expected under a neutral or slightly
deleterious model (45, 53, 128, 139, 163). This provides evidence for adaptive introgression, even
if the advantages of introgressed alleles are yet to be identified. In Europe, hybridization between
Mus musculus musculus andM. musculus domesticus has resulted in a history of introgression in ap-
proximately 3–18% of the genome, even far from the narrow hybrid zone (152). Introgressed al-
leles at greater than expected frequencies were inferred to be advantageous and to have undergone
selective sweeps, although selective coefficients were not estimated. In the northern RockyMoun-
tains of the United States, recently introduced rainbow trout hybridize with westslope cutthroat
trout in mountain streams (102). Across several independent hybrid zones, there is an overrep-
resentation of certain rainbow trout alleles relative to neutral expectations (17). Selective coeffi-
cients as large as 0.05 are needed to explain the frequencies of these alleles in hybrid populations,
which are consistent across zones. The specific functions of these high-frequency alleles are still
unknown, but functional categories such as transport of toxic compounds were overrepresented
among introgressed loci. This could be indicative of polygenic selection on particular traits or on
multiple different traits in hybrid trout populations.

Only alleles with strongly beneficial effects are likely to introgress between highly divergent
populations or species, because of widespread genetic incompatibilities (2, 124). For example,
adaptive responses to extreme anthropogenic selective pressures, such as rodenticide resistance
transferred from Mus spretus to M. musculus domesticus (150) or kdr insecticide resistance from
Anopheles gambiae to Anopheles coluzziimosquitoes (113), involve single loci with very strong selec-
tive advantages (lower-bound selection coefficient s= 0.28 and 0.13, respectively). Another insec-
ticide resistance allele was recently identified as adaptively introgressed from the mothHelicoverpa
armigera intoHelicoverpa zea: Although no selective coefficient was estimated, the frequency of the
introgressed allele rose from 0% to 70% in just 4 years, implying very strong selection (158).
Heliconius butterflies experience strong selection for local mimetic color patterns (20, 80, 92).
Across a Heliconius erato color pattern cline in Peru, the average selection coefficients for three
pattern-determining loci were ∼0.22 (92, 136). These large-effect color pattern switch loci have
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also been passed between hybridizing species within the genus through introgression (34, 108,
162). Similarly, the allele regulating expression of the AGOUTI pigmentation gene, resulting in a
winter brown as opposed to a winter white coat, arose in the black-tailed jackrabbit (Lepus californi-
cus) and was transferred to populations of snowshoe hare (Lepus americanus) (68). This phenotype,
which is adaptive in the relatively temperate Pacific Northwest, had a selective advantage of be-
tween 0.027 and 0.049 (69).

EFFECTS OF DEMOGRAPHY AND RECOMBINATION

Some introgressed alleles are globally or locally beneficial, others are globally or locally delete-
rious, and still others will be effectively neutral. However, introgressed alleles may not act inde-
pendently of other loci. Instead, one must interpret their impacts in the context of interactions
among loci. Two factors that influence non-independence have been studied in depth: Recombi-
nation determines the rate at which introgressed alleles at two or more loci become dissociated,
and demography influences the effectiveness of natural selection on linked introgressed alleles.

Recombination

Regions of the genome with high recombination rates tend to be more permissive to introgression
than regions with lower recombination rates (2, 71, 111) (Figure 3d). This is in part due to the
effects of selection on sites linked to introgressed alleles (i.e., linked selection) (18, 19, 25, 31). If a
particular genomic region has positive (i.e., selective sweep) or negative (i.e., background selection)
effects, both the region itself and neighboring variants will be swept into or out of the population,
which will tend to reduce variation around the selected site.The effects of linked selection vary lo-
cally depending on recombination rate, but the process has a global impact across the genome. In
humans, allele frequencies of a majority of SNPs in the genome are impacted by background selec-
tion or selective sweeps (125). Recombination is also heterogeneous across the genome—in many
species, such as three-spined sticklebacks, recombination rate is high at the ends of chromosomes
and low in the center, especially near centromeres (132), while in others, likeHeliconius butterflies,
recombination is higher in the center and lower at the ends (96, 151). These patterns mean that
the probability of introgression for loci with a given selective advantage or disadvantage varies
depending on physical location in the genome. Within low recombination regions, introgressed
loci are effectively linked to a larger number of deleterious alleles. Beneficial alleles must have
high selective coefficients to overcome the combined effects of negative linked selection against
their neighbors and rise to high frequency in recipient populations. Low recombination regions
of the genome can harbor multiple divergently advantageous alleles, aiding stable polymorphisms
among ecotypes or among species due to divergent selection (26, 74). Interestingly, although fixed
inversions are more resistant to introgression because they inhibit recombination, introgression
can also transfer inversions as cassettes of globally adaptive alleles between populations (66). Con-
versely, in regions of high recombination, mildly advantageous alleles can recombine away from
deleterious alleles and escape the effects of linked negative selection.

In addition to the effects of local recombination rate and selection around a locus of interest,
aggregate genome-wide recombination rate contributes to population-level variation in intro-
gressed ancestry (159). This aggregate rate, or the probability that any two loci in the genome
recombine in each meiosis, is largely driven by the haploid number of chromosomes because
the majority of this mixing is accomplished through independent assortment (160). In species
with high global recombination, deleterious introgressed ancestry will be distributed rapidly
among all members of a population. Such populations will have a low variance in fitness, due to
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similar proportions of deleterious introgressed ancestry among individuals, and natural selection
will purge deleterious alleles at a low rate. Simulations assuming high (human, n = 23) and
low (Drosophila, n = 4) aggregate recombination rates show that “Drosophila purges as much
introgressed DNA in 13 generations as humans do in 2,000 generations ” (159, p. 10). Consistent
with this argument,Heliconius butterflies show a much stronger correlation between chromosome
size and introgression than between local recombination rate and introgression (39). Because
each Heliconius chromosome has approximately one crossover per meiosis (96), the probability
that linked loci recombine on a short chromosome is higher than on a long chromosome.
Introgressed variation on shorter chromosomes, therefore, may equilibrate across the population
more quickly than that on longer chromosomes, while that on long chromosomes will remain
more heterogeneous, with larger blocks of introgressed and non-introgressed regions. This led to
an unequal rate of purging of introgressed ancestry and the strong observed negative correlation
between chromosome size and fraction of loci introgressed (159).

Demography

When deleterious alleles introgress into larger populations and the selective effects remain
constant, individuals that carry them will have lower fitness, regardless of epistasis between
introgressed and nonintrogressed alleles. This scenario is exemplified by recent models of
Neanderthal–modern human gene flow (70) (Figure 3e). In these models, Neanderthals inter-
breed freely with modern humans, the latter having a historical Ne of approximately 10 times that
of Neanderthals.Hybrids withNeanderthals likely suffered a fitness cost simply due to deleterious
effects of Neanderthal alleles, leading to a gradual loss of Neanderthal ancestry in modern humans
to about 2% of today’s non-African human genomes. This deleterious effect of hybridization led
to a positive correlation between recombination rate and introgressed ancestry (142), as expected
from theory (159).

Alternatively, introgression from large populations into small ones can reverse the correlation
between gene flow and recombination. If a large population sends migrants into a small popula-
tion, individuals with hybrid ancestry may have fewer deleterious alleles. In addition, if the popu-
lation is so small as to have appreciable levels of inbreeding, introgression may contribute needed
heterozygosity to rescue individuals from inbreeding depression. This is the basis for hybrid res-
cue practiced in the conservation community (81). In brook trout, where domesticated individuals
with a largeNe hybridized with wild individuals with a smallNe, introduced domesticated ancestry
has become more common in genomic regions with low recombination rates (82).

DISCUSSION

We have examined the prevalence of introgressed ancestry in genomes, the ways in which intro-
gressed alleles can be adaptive, and the demographic factors that determine introgression prob-
ability. However, we have yet to answer the overarching question: How important is adaptive
introgression in evolution? To address that question requires an investigation of how often adap-
tation of any sort depends on introgressed alleles, or how often species divergence of any sort is
accompanied or aided by introgression.While still unanswered, these questions have begun to be
asked in specific groups (106). A more tractable question given current data might be, When do
we expect hybridization to be of most importance? For introgression to take place, two species
must have overlapping geographic ranges and must be sufficiently closely related so that at least
some hybrid offspring are fertile. In addition, although most hybrids are expected to be unfit, the
adaptive landscape must be such that some recombinant hybrids have high fitness. One instance
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where both conditions are likely met is in rapid adaptive radiations: Novel populations are able to
expand into new niches due to key innovations or ecological opportunity (95, 140, 143). Genomic
introgression is a feature of many rapid radiations studied at a genomic scale, including in cichlid
fish,Heliconius butterflies,Darwin’s finches, and Ctenotus skinks (34, 39, 75, 79, 103, 127, 154).This
introgression is not simply due to neutral variants passing between sister species; it includes adap-
tive alleles that have undergone interspecific sweeps (108). In African Great Lake cichlids, likely
triggers for adaptive radiation arose in different lineages that came into contact and hybridized.
The resulting hybrid population led to highly successful recombinant lineages that spawned many
new species (95, 103, 154).

Introgression has the potential to provide beneficial variation in any situation where species
enter novel environments.Many studies of the demographic impact of adaptive introgression (in-
cluding much of our own discussion above) tacitly assume that selective coefficients of alleles re-
main unchanged when transferred from one population to another. This is perhaps true in some
cases, such as target site insecticide resistance in mosquitoes (113). Provided the pathways of in-
secticide action are conserved, alleles that confer resistance in one species will likely have a similar
effect in the other. However, this independence of genomic background may not be true in gen-
eral. In yeast, the samemutations have varying fitness effects depending on the genomic and fitness
background of each particular strain (67), and, in humans, disease alleles identified by genome-
wide association study in one population do not necessarily have the same effect in another (101).

Theory helps to explain these variable effects. In the Fisher–Orr geometric model of quantita-
tive adaptation toward a new optimum (44, 114, 115), alleles fixed early in the process are expected
to have the largest fitness effects, while later evolving alleles will have smaller effects, leading to an
approximately exponential distribution of fitness effects. Recombinant hybrid genotypes between
divergently adapted populations will tend to be far from a fitness peak andwill have low average fit-
ness with a high variance mainly due to combinations of large-effect alleles. Selection among these
genotypes can then ultimately result in higher fitness of introgressed populations or hybrid species
(15, 90). These effects may contribute to rapid adaptation at range edges, in invasive species, and
in other populations subject to changing environments. Evidence is mounting that hybridization
is indeed a catalyst for evolution in all three of these situations. Contrary to the prediction that
hybridization always swamps the effects of locally adapted alleles (100), hybrid offspring of dif-
ferently adapted species in groups such asMimulus rapidly accumulate combinations of traits and
alleles that are highly beneficial in their current environment (7, 8). Similarly, invasive species that
hybridize can be more likely to establish in a new environment than those that do not (37, 122).
In the agriculturally important tetraploid switchgrass, alleles beneficial in postglacial expansion
to northern latitudes also showed a history of introgression among independently cold-adapted
populations of the same species (85).

CONCLUSION

The probability that two populations will hybridize, and that hybridization will result in intro-
gression, depends in a complex way on reduced compatibility due to divergence, positive and
negative selection, recombination, and demography. Adaptive introgression of an allele depends
not only on its beneficial effects but also on where that allele is located in the genome, how it im-
pacts fitness in the recipient population, and the recent demographic history of the introgressed
population. Despite the difficulty of identifying genomic introgression (see the section titled As-
sessing Prevalence of Introgression), recent studies have made clear that it is widespread and can
often contribute large fractions of the genome in extant species. These empirical findings suggest
that hybrid outcomes depend more strongly on long-term rather than short-term consequences,
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such as early generation hybrid unfitness. Novel combinations of alleles apparently provide a cat-
alyst for evolution, generating high fitness variance in a population from which natural selection
can pull out previously untested beneficial combinations of alleles. In changing or novel condi-
tions, this catalytic process appears to allow populations to cross fitness valleys and provide new
avenues along which populations can evolve and persist. The question of whether hybrid popula-
tions should be categorized as hybrid species is somewhat moot—it is clear that hybridization can
kick-start ecological divergence, yielding species that interact with their environments in different
ways than their parents. Whether we call these hybrid species is semantic.

Remaining questions include the one we started with: How important is adaptive introgression
in evolution? We predict that researchers investigating both plants and animals will continue to
find evidence for adaptation aided by introgression, particularly in species adapting to novel envi-
ronments such as in the context of climate change. In these situations, future studies should iden-
tify traits under recent selection, and independently identify introgressed regions of the genome.
Long-read and linked-read sequencing will help with this effort, illuminating the timing of se-
lection and the identities of populations that exchanged genes. This knowledge promises to be
helpful in conservation to decide which populations are most valuable and of theoretical interest
by more fully elucidating mechanisms of adaptation and speciation in natural populations.
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105. Meier JI, Salazar PA, Kučka M, Davies RW, Dréau A, et al. 2021. Haplotype tagging reveals parallel
formation of hybrid races in two butterfly species. PNAS 118:e2015005118

106. MenonM,Bagley JC,PageGFM,Whipple AV,Schoettle AW,et al. 2021.Adaptive evolution in a conifer
hybrid zone is driven by a mosaic of recently introgressed and background genetic variants. Commun.
Biol. 4:160

107. Mérot C, Mavárez J, Evin A, Dasmahapatra KK, Mallet J, et al. 2013. Genetic differentiation without
mimicry shift in a pair of hybridizingHeliconius species (Lepidoptera: Nymphalidae).Biol. J. Linnean Soc.
109:830–47

108. Moest M, Van Belleghem SM, James JE, Salazar C, Martin SH, et al. 2020. Selective sweeps on novel
and introgressed variation shape mimicry loci in a butterfly adaptive radiation. PLOS Biol. 18:e3000597

109. Moyle LC, Nakazato T. 2010. Hybrid incompatibility “snowballs” between Solanum species. Science
329:1521–23

110. Muller HJ. 1942. Isolating mechanisms, evolution and temperature. In Biological Symposia, Vol. 6, ed.
T Dobzhansky, pp. 71–125. Lancaster, PA: Jacques Cattell Press

111. Nachman MW, Payseur BA. 2012. Recombination rate variation and speciation: theoretical predictions
and empirical results from rabbits and mice. Philos. Trans. R. Soc. B 367:409–21

112. Nieto Feliner G, Alvarez I, Fuertes-Aguilar J, Heuertz M, Marques I, et al. 2017. Is homoploid hybrid
speciation that rare? An empiricist’s view.Heredity 118:513–16

113. Norris LC, Main BJ, Lee Y, Collier TC, Fofana A, et al. 2015. Adaptive introgression in an African
malaria mosquito coincident with the increased usage of insecticide-treated bed nets. PNAS 112:815–20

114. Orr HA. 1998. The population genetics of adaptation: the distribution of factors fixed during adaptive
evolution. Evolution 52:935–49

115. Orr HA. 2000. Adaptation and the cost of complexity. Evolution 54:13–20
116. Orr HA, Turelli M. 2001. The evolution of postzygotic isolation: accumulating Dobzhansky-Muller

incompatibilities. Evolution 55:1085–94
117. Palkopoulou E, Lipson M, Mallick S, Nielsen S, Rohland N, et al. 2018. A comprehensive genomic

history of extinct and living elephants. PNAS 115:E2566–74
118. PattersonNJ,Moorjani P,Luo Y,Mallick S,RohlandN, et al. 2012.Ancient admixture in human history.

Genetics 192:1065–93
119. Payseur BA, Rieseberg LH. 2016. A genomic perspective on hybridization and speciation. Mol. Ecol.

25:2337–60
120. Pease JB, Haak DC, Hahn MW, Moyle LC. 2016. Phylogenomics reveals three sources of adaptive

variation during a rapid radiation. PLOS Biol. 14:e1002379
121. Peter BM. 2016. Admixture, population structure, and F-statistics.Genetics 202:1485–501
122. Pfennig KS, Kelly AL, Pierce AA. 2016. Hybridization as a facilitator of species range expansion. Proc.

R. Soc. B 283:20161329
123. Phadnis N. 2011.Genetic architecture of male sterility and segregation distortion inDrosophila pseudoob-

scura Bogota–USA hybrids.Genetics 189:1001–9
124. Piálek J, Barton NH. 1997. The spread of an advantageous allele across a barrier: the effects of random

drift and selection against heterozygotes.Genetics 145:493–504
125. Pouyet F, Aeschbacher S,Thiéry A, Excoffier L. 2018. Background selection and biased gene conversion

affect more than 95% of the human genome and bias demographic inferences. eLife 7:e36317

www.annualreviews.org • Introgression and Adaptation 281

A
nn

u.
 R

ev
. G

en
et

. 2
02

1.
55

:2
65

-2
83

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
73

.2
34

.1
72

.7
8 

on
 0

1/
07

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



126. Pulido-Santacruz P, Aleixo A,Weir JT. 2020.Genomic data reveal a protracted window of introgression
during the diversification of a neotropical woodcreeper radiation. Evolution 74:842–58

127. Rabosky DL, Hutchinson MN, Donnellan SC, Talaba AL, Lovette IJ. 2014. Phylogenetic disassembly
of species boundaries in a widespread group of Australian skinks (Scincidae: Ctenotus).Mol. Phylogenet.
Evol. 77:71–82

128. Racimo F, Sankararaman S, Nielsen R, Huerta-Sánchez E. 2015. Evidence for archaic adaptive intro-
gression in humans.Nat. Rev. Genet. 16:350–71

129. Rieseberg LH. 1997. Hybrid origins of plant species. Annu. Rev. Ecol. Syst. 28:359–89
130. Rieseberg LH. 2006. Hybrid speciation in wild sunflowers. Ann. Missouri Bot. Garden 93:34–48
131. Rieseberg LH, Soltis DE, Palmer JD. 1988. A molecular reexamination of introgression between

Helianthus annuus and H. bolanderi (Compositae). Evolution 42:227–38
132. Roesti M, Hendry AP, Salzburger W, Berner D. 2012. Genome divergence during evolutionary diver-

sification as revealed in replicate lake–stream stickleback population pairs.Mol. Ecol. 21:2852–62
133. Roesti M, Moser D, Berner D. 2013. Recombination in the threespine stickleback genome—patterns

and consequences.Mol. Ecol. 22:3014–27
134. Rogers J, Raveendran M,Harris RA,Mailund T, Leppälä K, et al. 2019. The comparative genomics and

complex population history of Papio baboons. Sci. Adv. 5:eaau6947
135. Romanes GJ. 1886. Physiological selection; an additional suggestion on the origin of species. Zoöl. J.

Linnean Soc. 19:337–411
136. Rosser N,Dasmahapatra KK,Mallet J. 2014. StableHeliconius butterfly hybrid zones are correlated with

a local rainfall peak at the edge of the Amazon basin. Evolution 68:3470–84
137. Rosser N, Queste L, Cama B, Edelman N,Mann F, et al. 2019. Geographic contrasts between pre- and

postzygotic barriers are consistent with reinforcement in Heliconius butterflies. Evolution 73:1821–38
138. Sabeti PC, Reich DE, Higgins JM, Levine HZP, Richter DJ, et al. 2002. Detecting recent positive se-

lection in the human genome from haplotype structure.Nature 419:832–37
139. SchieldDR,AdamsRH,CardDC,Perry BW,PasquesiGM,et al. 2017. Insight into the roles of selection

in speciation from genomic patterns of divergence and introgression in secondary contact in venomous
rattlesnakes. Ecol. Evol. 7:3951–66

140. Schluter D. 2000. The Ecology of Adaptive Radiation. New York: Oxford Univ. Press
141. Schumer M, Rosenthal G, Andolfatto P. 2014. How common is homoploid hybrid speciation? Evolution

68:1553–60
142. Schumer M,Xu C, Powell DL,Durvasula A, Skov L, et al. 2018.Natural selection interacts with recom-

bination to shape the evolution of hybrid genomes. Science 360:656–60
143. Seehausen O. 2004. Hybridization and adaptive radiation. Trends Ecol. Evol. 19:198–207
144. Setter D, Mousset S, Cheng X, Nielsen R, DeGiorgio M, Hermisson J. 2020. VolcanoFinder: genomic

scans for adaptive introgression. PLOS Genet. 16:e1008867
145. Shull GH. 1952. Beginnings of the heterosis concept. In Heterosis: A Record of Researches Directed Toward

Explaining and Utilizing the Vigor of Hybrids, ed. JW Gowen, pp. 14–48. Ames, Iowa: Iowa State College
Press

146. Slate J. 2005. Quantitative trait locus mapping in natural populations: progress, caveats and future di-
rections.Mol. Ecol. 14:363–79

147. Slowinski JB, Page RDM. 1999. How should species phylogenies be inferred from sequence data? Syst.
Biol. 48:814–25

148. Solís-Lemus C, Ané C. 2016. Inferring phylogenetic networks with maximum pseudolikelihood under
incomplete lineage sorting. PLOS Genet. 12:e1005896

149. Soltis PS, Soltis DE. 2009.The role of hybridization in plant speciation.Annu. Rev. Plant Biol. 60:561–88
150. Song Y, Endepols S, Klemann N, Richter D, Matuschka FR, et al. 2011. Adaptive introgression of anti-

coagulant rodent poison resistance by hybridization between Old World mice. Curr. Biol. 21:1296–301
151. Stapley J, Feulner PGD, Johnston SE, Santure AW, Smadja CM. 2017. Variation in recombination fre-

quency and distribution across eukaryotes: patterns and processes. Philos. Trans. R. Soc. B 372:20160455
152. Staubach F, Lorenc A, Messer PW, Tang K, Petrov DA, Tautz D. 2012. Genome patterns of selection

and introgression of haplotypes in natural populations of the house mouse (Mus musculus). PLOS Genet.
8:e1002891

282 Edelman • Mallet

A
nn

u.
 R

ev
. G

en
et

. 2
02

1.
55

:2
65

-2
83

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
73

.2
34

.1
72

.7
8 

on
 0

1/
07

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



153. Suvorov A, Kim BY, Wang J, Armstrong EE, Peede D, et al. 2021. Widespread introgression across a
phylogeny of 155 Drosophila genomes. bioRxiv 2020.12.14.422758. https://doi.org/10.1101/2020.12.
14.422758

154. Svardal H, Quah FX, Malinsky M, Ngatunga BP, Miska EA, et al. 2019. Ancestral hybridization facili-
tated species diversification in the LakeMalawi cichlid fish adaptive radiation.Mol. Biol. Evol.37:1100–13

155. Taylor SA, Larson EL. 2019. Insights from genomes into the evolutionary importance and prevalence
of hybridization in nature.Nat. Ecol. Evol. 3:170–77

156. TodescoM, Pascual MA,Owens GL,Ostevik KL,Moyers BT, et al. 2016.Hybridization and extinction.
Evol. Appl. 9:892–908

157. Turelli M, Lipkowitz JR, Brandvain Y. 2014. On the Coyne and Orr-igin of species: effects of intrinsic
postzygotic isolation, ecological differentiation, X chromosome size, and sympatry on Drosophila speci-
ation. Evolution 68:1176–87

158. Valencia-Montoya WA, Elfekih S, North HL, Meier JI, Warren IA, et al. 2020. Adaptive introgression
across semipermeable species boundaries between localHelicoverpa zea and invasiveHelicoverpa armigera
moths.Mol. Biol. Evol. 37:2568–83

159. Veller C,EdelmanNB,Muralidhar P,NowakMA.2019.Recombination, variance in genetic relatedness,
and selection against introgressed DNA. bioRxiv 846147. https://doi.org/10.1101/846147

160. Veller C, Kleckner N, Nowak MA. 2019. A rigorous measure of genome-wide genetic shuffling that
takes into account crossover positions and Mendel’s second law. PNAS 116:1659–68

161. Voight BF, Kudaravalli S, Wen X, Pritchard JK. 2006. A map of recent positive selection in the human
genome. PLOS Biol. 4:e72

162. Wallbank RWR, Baxter SW, Pardo-Diaz C, Hanly JJ, Martin SH, et al. 2016. Evolutionary novelty in a
butterfly wing pattern through enhancer shuffling. PLOS Biol. 14:e1002353

163. Walsh J, Kovach AI, Olsen BJ, Shriver WG, Lovette IJ. 2018. Bidirectional adaptive introgression be-
tween two ecologically divergent sparrow species. Evolution 72:2076–89

164. Weber AA-T, Rajkov J, Smailus K, Egger B, Salzburger W. 2021. Diversification dynamics and
(non-)parallel evolution along an ecological gradient in African cichlid fishes. bioRxiv
2021.01.12.426414. https://doi.org/10.1101/2021.01.12.426414

165. WenD,Nakhleh L. 2018. Coestimating reticulate phylogenies and gene trees frommultilocus sequence
data. Syst. Biol. 67:439–57

166. Wright S. 1931. Evolution in Mendelian populations.Genetics 10:97–159

www.annualreviews.org • Introgression and Adaptation 283

A
nn

u.
 R

ev
. G

en
et

. 2
02

1.
55

:2
65

-2
83

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
73

.2
34

.1
72

.7
8 

on
 0

1/
07

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 

https://doi.org/10.1101/2020.12.14.422758
https://doi.org/10.1101/846147
https://doi.org/10.1101/2021.01.12.426414



